Skip to main content
Log in

Toward the application of electromagnetic wave absorption by two-dimension materials

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Searching for the superior electromagnetic wave absorption materials (EMWAMs) has sparked giant interest owing to the increasingly serious electromagnetic wave (EMW) pollution and the boosting development of stealth fighters. Among numerous EMW absorbing materials, the two-dimension (2D) materials with unique layered morphology, low mass density, excellent processability and controllable electromagnetic parameters stand out for the lightweight, high-efficiency EMW absorbing materials. Here, we will summary the state-of-art progress on the 2D materials for EMWAMs, including graphene, MoS2, h-BN, g-C3N4, LDH (layered double hydroxides) and others. Meanwhile, the relevant preparation synthesis, absorption mechanisms and performance comparisons are presented. Specially, with the aim to obtain the superior absorption ability in term of broad effective absorption bandwidth (EAB), strong absorption intensity and thin thickness, the two key factors that significantly influence the ultimate performance, namely, good impedance matching and strong attenuation capacity, have been considered all the time. Finally, the bottlenecks and outlooks are further put forward on the basis of its current development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from [47]. Copyright Springer 2014), g-C3N4, h-BN, LDH (layered double hydroxides) and others (such as BP) (Reproduced with permission from [48]. Copyright American Chemical Society 2017)

Fig. 3

(Reproduced with permission from [58]. Copyright John Wiley and Sons 2018); SEM image (e), RL curves (f) and the absorption mechanism (g) for CoFe2O4/RGO/CoFe2O4 (CRC) composites (Reproduced with permission from [62]. Copyright American Chemical Society 2019); schematic of the synthesis (h) and SEM image (i) for the 3D graphene foams (Reproduced with permission from [65]. Copyright Elsevier 2018)

Fig. 4

(Reproduced with permission from [77]. Copyright Elsevier 2020); g schematic illustration of synthesis for 2-0, 2-1, and 2-3 MoS2-based composites (Reproduced with permission from [78]. Copyright American Chemical Society 2017); k TEM image of core–shell structure Fe@B2O3 nanoparticles, l RL curves and (m) 3D RL plots for SSA (Reproduced with permission from [79]. Copyright Elsevier 2020)

Fig. 5

(Reproduced with permission from [85]. Copyright Elsevier 2019); c the Schematic of the preparation process and the related SEM images of rGO-h-BN hybrids (Reproduced with permission from [55]. Copyright American Chemical Society 2016); d, e the SEM images of BN/CFs composites calcined at 1250 °C, and the RL cures for f pure CFs and g BN/CFs composites (Reproduced with permission from [86]. Copyright Royal Society of Chemistry 2018)

Fig. 6

(Reproduced with permission from [88]. Copyright Elsevier 2018); schematic of the preparation process (e), 3D curves of RL values (f) and the EMW absorption mechanism (g) for magnetic g-C3N4/g-carbon foams (CNFs) as well as (h) the schematic diagram of the 3D printing technology and the obtained 3D printing absorber (Reproduced with permission from [89]. Copyright American Chemical Society 2020)

Fig. 7

(Reproduced with permission from [91]. Copyright Elsevier 2020); the synthesis process of NiCo-alloy@tubular-g-C3N4 composites (Reproduced with permission from [92]. Copyright Elsevier 2018); SEM images of i Mg/Fe-LDHs, g Mg/Fe-LDOs, and k Mg/Fe-LDO/carbon nanohelix composites, and the RL curves for Mg/Fe-LDO/carbon nanohelix composites (Reproduced with permission from [93]. Copyright Elsevier 2016)

Fig. 8

aerogel (Reproduced with permission from [96]. Copyright Institute of Physics 2018); schematic illustration of crystal structure (f), SEM image (g) and the RL curves for GeP5 (Reproduced with permission from [97]. Copyright American Institute of Physics 2019); the synthesis process (i) and SEM image (j) for Bi2Te3 (Reproduced with permission from [100]. Copyright Royal Society of Chemistry 2018)

Similar content being viewed by others

References

  1. H. Wu, M. Qin, L. Zhang, NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance. Composite Part B 182, 107620 (2019)

    Article  CAS  Google Scholar 

  2. H. Liang, J. Liu, Y. Zhang, L. Luo, H. Wu, Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material. Composite Part B 178, 107507 (2019)

    Article  CAS  Google Scholar 

  3. Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin, J. Xie, N. Mahmood, S. Dou, R. Che, L. Deng, Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, (2020)

  4. M. Cao, Y. Cai, P. He, J. Shu, W. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)

    Article  CAS  Google Scholar 

  5. Z. Zhao, K. Kou, H. Wu, 2-Methylimidazole-mediated hierarchical Co3O4/N-doped carbon/short-carbon-fiber composite as high-performance electromagnetic wave absorber. J. Colloid Interface Sci. 574, 1–10 (2020)

    Article  CAS  Google Scholar 

  6. M. Huang, L. Wang, K. Pei, W. You, X. Yu, Z. Wu, R. Che, Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16, 2000158 (2020)

    Article  CAS  Google Scholar 

  7. M. Li, X. Yin, H. Xu, X. Li, L. Cheng, L. Zhang, Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. J. Am. Ceram. Soc. 102, 5305–5315 (2019)

    Article  CAS  Google Scholar 

  8. H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019)

    Article  CAS  Google Scholar 

  9. X. Sun, M. Yang, S. Yang, S. Wang, W. Yin, R. Che, Y. Li, Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019)

    Article  CAS  Google Scholar 

  10. Q. Wu, H. Gao, Y. Zhang, W. Shui, Microwave absorption and mechanical properties of cross-scale SiC composites. Compos. B 155, 83–91 (2018)

    Article  CAS  Google Scholar 

  11. M. Zhang, J. Zhao, Z. Li, S. Ding, Y. Wang, G. Qiu, A. Meng, Q. Li, Ultralong SiC/SiO2 nanowires: simple gram-scale production and their effective blue-violet photoluminescence and microwave absorption properties. ACS Sustain. Chem. Eng. 6, 3596–3603 (2018)

    Article  CAS  Google Scholar 

  12. L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng, S. Dong, D. Zhang, X. Zhang, In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces. 9, 6320–6331 (2017)

    Article  CAS  Google Scholar 

  13. C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces. 7, 20090–20099 (2015)

    Article  CAS  Google Scholar 

  14. X. Li, L. Wang, W. You, L. Xing, X. Yu, Y. Li, R. Che, Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 11, 2694–2702 (2019)

    Article  CAS  Google Scholar 

  15. J. Liu, H. Liang, Y. Zhang, G. Wu, H. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Composite Part B 176, 107240 (2019)

    Article  CAS  Google Scholar 

  16. X. Liu, Y. Huang, N. Zhang, S. Zhou, Synthesis of CoNi/SiO2 core-shell nanoparticles decorated reduced graphene oxide nanosheets for enhanced electromagnetic wave absorption properties. Ceram. Int. 44, 22189–22197 (2018)

    Article  CAS  Google Scholar 

  17. F. Wang, N. Wang, X. Han, D. Liu, Y. Wang, L. Cui, P. Xu, Y. Du, Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019)

    Article  CAS  Google Scholar 

  18. D. Zhang, H. Zhang, J. Cheng, H. Raza, T. Liu, B. Liu, X. Ba, G. Zheng, G. Chen, M. Cao, Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 8, 5923–5933 (2020)

    Article  CAS  Google Scholar 

  19. Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019)

    Article  CAS  Google Scholar 

  20. T. Hou, B. Wang, Z. Jia, H. Wu, D. Lan, Z. Huang, A. Feng, M. Ma, G. Wu, A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J. Mater. Sci. 30, 10961–10984 (2019)

    CAS  Google Scholar 

  21. D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu, X. Ba, S. Ullah, G. Zheng, M. Yan, M. Cao, Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 65, 138–146 (2020)

    Article  CAS  Google Scholar 

  22. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. 29, 17122–17136 (2018)

    CAS  Google Scholar 

  23. M. Zhang, H. Yang, Y. Li, W. Cao, X. Fang, J. Yuan, M. Cao, Cobalt doping of bismuth ferrite for matched dielectric and magnetic loss. Appl. Phys. Lett. 115, 212902 (2019)

    Article  CAS  Google Scholar 

  24. M. Green, X. Chen, Recent progress of nanomaterials for microwave absorption. J. Mater. 5, 503–541 (2019)

    Google Scholar 

  25. D. Lan, M. Qin, J. Liu, G. Wu, Y. Zhang, H. Wu, Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 382, 122797 (2020)

    Article  CAS  Google Scholar 

  26. Y. Cheng, Y. Zhao, H. Zhao, H. Lv, X. Qi, J. Cao, G. Ji, Y. Du, Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019)

    Article  CAS  Google Scholar 

  27. L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, (2020)

  28. M. Qin, D. Lan, J. Liu, H. Liang, L. Zhang, H. Xing, T. Xu, H. Wu, Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications. Chem. Rec. (2019)

  29. L. Xu, Y. Xiong, B. Dang, Z. Ye, C. Jin, Q. Sun, X. Yu, In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Mater. Des. 182, 108006 (2019)

    Article  CAS  Google Scholar 

  30. L. Zhang, K. Khan, J. Zou, H. Zhang, Y. Li, Recent advances in emerging 2D material-based gas sensors: potential in disease diagnosis. Adv. Mater. Interfaces 6, 1901329 (2019)

    Article  Google Scholar 

  31. H. Bian, Y. Ji, J. Yan, P. Li, L. Li, Y. Li, S. Liu, In situ synthesis of few-layered g-C3N4 with vertically aligned MoS2 loading for boosting solar-to-hydrogen generation. Small 14, 1703003 (2018)

    Article  CAS  Google Scholar 

  32. J. Shen, J. Wu, L. Pei, M. Rodrigues, Z. Zhang, F. Zhang, X. Zhang, P. Ajayan, M. Ye, CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors. Adv. Energy Mater. 6, 1600341 (2016)

    Article  CAS  Google Scholar 

  33. Z. Duan, Y. Liu, X. Xie, X. Ye, X. Zhu, h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles: a hybrid anode material for lithium-ion batteries. Chemistry 11, 828–833 (2016)

    CAS  Google Scholar 

  34. G. Tang, P. You, Q. Tai, A. Yang, J. Cao, F. Zheng, Z. Zhou, J. Zhao, P.K.L. Chan, F. Yan, Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31, 1807689 (2019)

    Article  CAS  Google Scholar 

  35. M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, R.K.Y. Li, Two-dimensional materials: emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys. 13, 138113 (2018)

    Article  Google Scholar 

  36. M. Tang, J. Zhang, S. Bi, Z. Hou, X. Shao, K. Zhan, M. Cao, Ultrathin topological insulator absorber: unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces. 11, 33285–33291 (2019)

    Article  CAS  Google Scholar 

  37. Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019)

    Article  CAS  Google Scholar 

  38. X. Xu, S. Shi, G. Wan, C. Hao, Z. He, G. Wang, Uniformly coating MnOx nanoflakes onto carbon nanofibers as lightweight and wideband microwave absorbers with frequency-selective absorption. Mater. Des. 183, 108167 (2019)

    Article  CAS  Google Scholar 

  39. Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang, B. Wang, X. Yang, X. Bu, R. Wang, Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 34, 15854–15863 (2018)

    Article  CAS  Google Scholar 

  40. L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020)

    Article  CAS  Google Scholar 

  41. R. Wang, E. Yang, X. Qi, R. Xie, S. Qin, C. Deng, W. Zhong, Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surf. Sci. 516, (2020)

  42. M. Zhang, X. Wang, W. Cao, J. Yuan, M. Cao, Electromagnetic functions of patterned 2D materials for micro-nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7, 1900689 (2019)

    Article  CAS  Google Scholar 

  43. L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang, M. Cao, Y. Qin, Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 382, (2020)

  44. J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, (2020)

  45. C. Liang, H. Qiu, P. Song, X. Shi, J. Kong, J. Gu, Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020)

    Article  CAS  Google Scholar 

  46. M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang, J. Shu, H. Yang, X. Fang, J. Yuan, Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 6, 4586–4602 (2018)

    Article  CAS  Google Scholar 

  47. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014)

    Article  CAS  Google Scholar 

  48. C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    Article  CAS  Google Scholar 

  49. M. Li, M. Han, J. Zhou, Q. Deng, X. Zhou, J. Xue, S. Du, X. Yin, Q. Huang, Novel Scale-Like Structures of Graphite/TiC/Ti3C2 Hybrids for Electromagnetic Absorption. Adv. Electron. Mater. 4, (2018)

  50. X. Xu, G. Wang, G. Wan, S. Shi, C. Hao, Y. Tang, G. Wang, Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chem. Eng. J. 382, (2020)

  51. C. Zhang, B. Wang, J. Xiang, C. Su, C. Mu, F. Wen, Z. Liu, Microwave absorption properties of CoS2 nanocrystals embedded into reduced graphene oxide. ACS Appl. Mater. Interfaces. 9, 28868–28875 (2017)

    Article  CAS  Google Scholar 

  52. X. Li, X. Yin, C. Song, M. Han, H. Xu, W. Duan, L. Cheng, L. Zhang, Self-assembly core-shell graphene-bridged Hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, (2018)

  53. G. Wen, X. Zhao, Y. Liu, H. Zhang, C. Wang, Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J. 372, 1–11 (2019)

    Article  CAS  Google Scholar 

  54. J. Li, S. Bi, B. Mei, F. Shi, W. Cheng, X. Su, G. Hou, J. Wang, Effects of three-dimensional reduced graphene oxide coupled with nickel nanoparticles on the microwave absorption of carbon fiber-based composites. J. Alloys Compd. 717, 205–213 (2017)

    Article  CAS  Google Scholar 

  55. Y. Kang, Z. Jiang, T. Ma, Z. Chu, G. Li, Hybrids of reduced graphene oxide and hexagonal boron nitride: lightweight absorbers with tunable and highly efficient microwave attenuation properties. ACS Appl. Mater. Interfaces. 8, 32468–32476 (2016)

    Article  CAS  Google Scholar 

  56. X. Wang, T. Ma, J. Shu, M. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018)

    Article  CAS  Google Scholar 

  57. N. Zhang, Y. Huang, M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Composite Part B 136, 135–142 (2018)

    Article  CAS  Google Scholar 

  58. F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018)

    Article  CAS  Google Scholar 

  59. M. Cao, X. Wang, M. Zhang, W. Cao, X. Fang, J. Yuan, Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32, 1907156 (2020)

    Article  CAS  Google Scholar 

  60. R. Yang, B. Wang, J. Xiang, C. Mu, C. Zhang, F. Wen, C. Wang, C. Su, Z. Liu, Fabrication of NiCo2-anchored graphene nanosheets by liquid-phase exfoliation for excellent microwave absorbers. ACS Appl. Mater. Interfaces. 9, 12673–12679 (2017)

    Article  CAS  Google Scholar 

  61. X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu, X. Zhang, Y. Chen, Hollow N-Doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces. 10, 24920–24929 (2018)

    Article  CAS  Google Scholar 

  62. K. Zhang, J. Li, F. Wu, M. Sun, Y. Xia, A. Xie, Sandwich CoFe2O4/RGO/CoFe2O4 nanostructures for high-performance electromagnetic absorption. ACS Appl. Nano Mater. 2, 315–324 (2019)

    Article  CAS  Google Scholar 

  63. Z. Li, E. Yang, X. Qi, R. Xie, T. Jing, S. Qin, C. Deng, W. Zhong, Outstanding comprehensive performance versus facile synthesis: constructing core and shell-interchangeable nanocomposites as microwave absorber. J. Colloid Interface Sci. 565, 227–238 (2020)

    Article  CAS  Google Scholar 

  64. Q. Shang, H. Feng, Z. Feng, N. Chen, L. Tan, J. Qiu, H. Wu, Facile fabrication of sepiolite functionalized composites with tunable dielectric properties and their superior microwave absorption performance. J. Colloid Interface Sci. 576, 444–456 (2020)

    Article  CAS  Google Scholar 

  65. Y. Chen, H. Zhang, G. Zeng, Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure. Carbon 140, 494–503 (2018)

    Article  CAS  Google Scholar 

  66. Y. Jiang, Y. Chen, Y. Liu, G. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018)

    Article  CAS  Google Scholar 

  67. C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    Article  CAS  Google Scholar 

  68. A.K. Singh, P. Kumar, D.J. Late, A. Kumar, S. Patel, J. Singh, 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl. Mater. Today 13, 242–270 (2018)

    Article  Google Scholar 

  69. E. Yang, X. Qi, R. Xie, Z. Bai, Y. Jiang, S. Qin, W. Zhong, Y. Du, Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: synthesis, and enhanced microwave absorption properties. Appl. Surf. Sci. 442, 622–629 (2018)

    Article  CAS  Google Scholar 

  70. L. Long, E. Yang, X. Qi, R. Xie, Z. Bai, S. Qin, W. Zhong, Core@shell structured flower-like Co0.6Fe2.4O4@MoS2 nanocomposites: a strong absorption and broadband electromagnetic wave absorber. J. Mater. Chem. 7, 8975–8981 (2019)

    Article  CAS  Google Scholar 

  71. W. Zhang, X. Zhang, H. Wu, H. Yan, S. Qi, Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J. Alloys Compd. 751, 34–42 (2018)

    Article  CAS  Google Scholar 

  72. J. Pan, X. Sun, T. Wang, Z. Zhu, Y. He, W. Xia, J. He, Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption. Appl. Surf. Sci. 457, 271–279 (2018)

    Article  CAS  Google Scholar 

  73. S. Zhang, R. Hu, P. Dai, X. Yu, Z. Ding, M. Wu, G. Li, Y. Ma, C. Tu, Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Appl. Surf. Sci. 396, 994–999 (2017)

    Article  CAS  Google Scholar 

  74. J. Liu, H. Liang, H. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Composite Part A 130, 105760 (2020)

    Article  CAS  Google Scholar 

  75. W. Zhang, X. Zhang, Y. Zheng, C. Guo, M. Yang, Z. Li, H. Wu, H. Qiu, H. Yan, S. Qi, Preparation of Polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 1, 5865–5875 (2018)

    Article  CAS  Google Scholar 

  76. C. Zhou, C. Wu, M. Yan, Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth. ACS Appl. Nano Mater. 1, 5179–5187 (2018)

    Article  CAS  Google Scholar 

  77. L. Xing, X. Li, Z. Wu, X. Yu, J. Liu, L. Wang, C. Cai, W. You, G. Chen, J. Ding, R. Che, 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020)

    Article  CAS  Google Scholar 

  78. Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, Y. Du, MoS2-Based mixed-dimensional van der Waals heterostructures: a new platform for excellent and controllable microwave-absorption performance. ACS Appl. Mater. Interfaces. 9, 34243–34255 (2017)

    Article  CAS  Google Scholar 

  79. P. Wang, G. Wang, J. Zhang, B. Duan, L. Zheng, S. Zhang, D. He, T. Wang, Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band. Chem. Eng. J. 382, 122804 (2020)

    Article  CAS  Google Scholar 

  80. L. Liu, S. Zhang, F. Yan, C. Li, C. Zhu, X. Zhang, Y. Chen, Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces. 10, 14108–14115 (2018)

    Article  CAS  Google Scholar 

  81. M. Ning, B. Kuang, Z. Hou, L. Wang, J. Li, Y. Zhao, H. Jin, Layer by layer 2D MoS2/rGO hybrids: an optimized microwave absorber for high-efficient microwave absorption. Appl. Surf. Sci. 470, 899–907 (2019)

    Article  CAS  Google Scholar 

  82. C. Li, X. Shen, R. Ding, G. Wang, Controllable synthesis of one-dimensional MoO3/MoS2 hybrid composites with their enhanced efficient electromagnetic wave absorption properties. ChemPlusChem 84, 226–232 (2019)

    Article  CAS  Google Scholar 

  83. Y. Bai, B. Zhong, Y. Yu, M. Wang, J. Zhang, B. Zhang, K. Gao, A. Liang, C. Wang, J. Zhang, Mass fabrication and superior microwave absorption property of multilayer graphene/hexagonal boron nitride nanoparticle hybrids. Mater. Appl. 3, 32 (2019)

    Google Scholar 

  84. H. Pang, W. Pang, B. Zhang, N. Ren, Excellent microwave absorption properties of the h-BN-GO-Fe3O4 ternary composite. J. Mater. Chem. C 6, 11722–11730 (2018)

    Article  CAS  Google Scholar 

  85. Y. Kang, W. Li, T. Ma, X. Huang, Y. Mo, Z. Chu, Z. Zhang, G. Feng, Microwave-constructed honeycomb architectures of h-BN/rGO nano-hybrids for efficient microwave conversion. Compos. Sci. Technol. 174, 184–193 (2019)

    Article  CAS  Google Scholar 

  86. Z. Xu, Y. Chen, W. Li, J. Li, H. Yu, L. Liu, G. Wu, T. Yang, L. Luo, Preparation of boron nitride nanosheet-coated carbon fibres and their enhanced antioxidant and microwave-absorbing properties. RSC Adv. 8, 17944–17949 (2018)

    Article  CAS  Google Scholar 

  87. B. Zhong, Y. Cheng, M. Wang, Y. Bai, X. Huang, Y. Yu, H. Wang, G. Wen, Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance. Comp. A 112, 515–524 (2018)

    Article  CAS  Google Scholar 

  88. J. Yu, F. Chi, Y. Sun, J. Guo, X. Liu, Assembled porous Fe3O4@g-C3N4 hybrid nanocomposites with multiple interface polarization for stable microwave absorption. Ceram. Int. 44, 19207–19216 (2018)

    Article  CAS  Google Scholar 

  89. H. Han, Z. Lou, W. Peng, Q. Wang, R. Li, Y. Zhang, Y. Li, Synthesis of ultralight and porous magnetic g-C3N4/g-carbon foam with excellent electromagnetic wave (EMW) absorption performance and its application as a reinforcing agent for 3D printing EMW absorber. Ind. Eng. Chem. Res. (2020)

  90. S. Jamil, A.R. Alvi, S. Khan, J. Jan, Layered double hydroxides (LDHs): synthesis & applications. Prog. Chem. 31, 394–412 (2019)

    Google Scholar 

  91. H. Wu, Z. Zhao, G. Wu, Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci. 566, 21–32 (2020)

    Article  CAS  Google Scholar 

  92. S. Hu, Y. Zhou, M. He, Q. Liao, H. Yang, H. Li, R. Xu, Q. Ding, Hollow Ni-Co layered double hydroxides-derived NiCo-alloy@g-C3N4 microtubule with high-performance microwave absorption. Mater. Lett. 231, 171–174 (2018)

    Article  CAS  Google Scholar 

  93. S. Zhang, Q. Jiao, C. Wang, H. Yu, Y. Zhao, H. Li, Q. Wu, In situ synthesis of Mg/Fe LDO/carbon nanohelix composites as absorbing materials. J. Alloys Compd. 658, 505–512 (2016)

    Article  CAS  Google Scholar 

  94. C. Li, S. Wu, Z. Chen, B. Shu, Y. Li, Y. Xiao, Q. Liu, Synthesis of Fe3O4-decorated Mg-Al layered double hydroxides magnetic nanosheets to improve anti-ultraviolet aging and microwave absorption properties used in asphalt materials. Constr. Build. Mater. 220, 320–328 (2019)

    Article  CAS  Google Scholar 

  95. C. Li, S. Wu, B. Shu, Y. Li, Z. Chen, Microwave absorption and anti-aging properties of modified bitumen contained SiC attached layered double hydroxides. Constr. Build. Mater. 227, 116714 (2019)

    Article  CAS  Google Scholar 

  96. C. Hao, B. Wang, F. Wen, C. Mu, J. Xiang, L. Li, Z. Liu, Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus aerogel. Nanotechnology 29, 235604 (2018)

    Article  CAS  Google Scholar 

  97. Y. Chang, C. Mu, B. Yang, A. Nie, B. Wang, J. Xiang, Y. Yang, F. Wen, Z. Liu, Microwave absorbing properties of two dimensional materials GeP5 enhanced after annealing treatment. Appl. Phys. Lett. 114, 013103 (2019)

    Article  CAS  Google Scholar 

  98. J. Chen, X. Liang, B. Quan, Z. Yang, Y. Du, G. Ji, 3D flake-like Bi2Te3 with outstanding lightweight electromagnetic wave absorption feature. Part. Part. Syst. Charact. 35, 1700468 (2018)

    Article  CAS  Google Scholar 

  99. H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020)

    Article  CAS  Google Scholar 

  100. B. Zhao, X. Zhang, J. Deng, Z. Bai, L. Liang, Y. Li, R. Zhang, A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Phys. Chem. Chem. Phys. 20, 28623–28633 (2018)

    Article  CAS  Google Scholar 

  101. A.J. Mannix, X. Zhou, B. Kiraly, J. Wood, D. Alducin, B. Myers, X. Liu, B.L. Fisher, U. Santiago, J. Guest, M. Yacaman, A. Ponce, A. Oganov, M. Hersam, N. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513 (2015)

    Article  CAS  Google Scholar 

  102. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)

    Article  CAS  Google Scholar 

  103. N.G. Sahoo, R.J. Esteves, V.D. Punetha, D. Pestov, I.U. Arachchige, J.T. McLeskey, Schottky diodes from 2D germanane. Appl. Phys. Lett. 109, 023507 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Foundation of China (Grants nos. 51872238 and 21806129), the Fundamental Research Funds for the Central Universities (Nos. 310201911cx019, 3102018zy045 and 3102019AX11) and the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2020JM-118 and 2017JQ5116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhao, Z. & Zhang, L. Toward the application of electromagnetic wave absorption by two-dimension materials. J Mater Sci: Mater Electron 32, 25562–25576 (2021). https://doi.org/10.1007/s10854-020-03800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03800-1

Navigation