Skip to main content
Log in

Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, structural, electrochemical and optical properties of the flower-like Co3O4, NiO and CuO nanostructures were investigated. Co3O4, NiO and CuO nanoflowers were prepared using hydrothermal method. Fourier transform infrared spectroscopy was used in the confirmation of the chemical composition of the nanostructures. X-ray diffraction (XRD) was used in the analysis of crystal structures that peaks observed in the XRD analysis confirms good crystallinity of the nanoflowers. Scanning electron microscopy analysis was used to illustrate the flower-like structure of the nanostructures. Cyclic voltammetry (CV) was used in the assessment of the electrochemical properties. It was seen that flower-like Co3O4, NiO and CuO nanostructures have enhanced electrochemical properties. Using CV results, redox reaction processes of the Co3O4, NiO and CuO nanoflowers were determined. Diffusion constants were determined and NiO nanoflowers found to have the highest diffusion constant among those. Nyquist and Bode diagrams were evaluated. Energy band gaps of Co3O4, NiO, CuO nanoflowers were calculated which were found to be 2.10 eV, 2.25 eV and 3.71 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    CAS  Google Scholar 

  2. M. Daniel, D. Astruc, Chem. Rev. 1, 293 (2004)

    Google Scholar 

  3. R.L. Johnston, Atomic and Molecular Clusters, 1st edn. (Taylor & Francis, London, 2002)

    Google Scholar 

  4. A. Więckowski, E.R.E. Savinova, C.G. Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surfaces, 1st edn. (Marcel Dekker, New York, 2003)

    Google Scholar 

  5. W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, J.T. Park, Angew. Chem. Int. Ed. 43, 1115 (2004)

    CAS  Google Scholar 

  6. S. Wang, W. Lu, O. Tovmachenko, U. Rai, H. Yu, Chem. Phys. Lett. 1, 145 (2008)

    CAS  Google Scholar 

  7. N.H. Hung, N.D. Thanh, N.H. Lam, N.D. Dien, N.D. Chien, D.D. Vuong, Mater. Sci. Semicond. Process. 26, 18 (2014)

    Google Scholar 

  8. Y. Song, J. Wang, L. Liu, Q. Sun, Q. You, Y. Cheng, Y. Wang, S. Wang, F. Tan, N. Li, Mol. Pharm. 15, 1941 (2018)

    CAS  Google Scholar 

  9. L. Jin, D. Yue, Z.-W. Xu, G. Liang, Y. Zhang, J.-F. Zhang, X. Zhang, Z. Wang, RSC Adv. 4, 35035 (2014)

    CAS  Google Scholar 

  10. S. Vadukumpully, J. Paul, S. Valiyaveettil, Carbon N. Y. 47, 3288 (2009)

    CAS  Google Scholar 

  11. X. Hu, J. Sun, F. Li, R. Li, J. Wu, J. He, N. Wang, J. Liu, S. Wang, F. Zhou, X. Sun, D. Kim, T. Hyeon, D. Ling, Nano Lett. 18, 1196 (2018)

    CAS  Google Scholar 

  12. N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv. Asia 7, 63 (2003)

    CAS  Google Scholar 

  13. F. Qu, Y. Wang, J. Liu, S. Wen, Y. Chen, S. Ruan, Mater. Lett. 132, 167 (2014)

    CAS  Google Scholar 

  14. X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, Y. Qian, J. Phys. Chem. B 108, 16401 (2004)

    CAS  Google Scholar 

  15. F. Yakuphanoglu, W. Aslam Farooq, Mater. Sci. Semicond. Process. 14, 207 (2011)

    CAS  Google Scholar 

  16. X. Rong, Z. Hua Chun, Langmuir 20, 9780 (2004)

    Google Scholar 

  17. Y. Shi, Y. Chen, G. Tian, H. Fu, K. Pan, J. Zhou, H. Yan, Dalt. Trans. 43, 12396 (2014)

    CAS  Google Scholar 

  18. J. Chao, S. Xing, Z. Liu, X. Zhang, Y. Zhao, L. Zhao, Q. Fan, Mater. Res. Bull. 98, 194 (2018)

    CAS  Google Scholar 

  19. W.C. Yun, K.Y.A. Lin, W.C. Tong, Y.F. Lin, Y. Du, Chem. Eng. J. 373, 1329 (2019)

    CAS  Google Scholar 

  20. S. Sharma, D. Kumar, N. Khare, Int. J. Hydrogen Energy 44, 3538 (2019)

    CAS  Google Scholar 

  21. S. Lu, X. Li, J. Zhang, C. Peng, M. Shen, X. Shi, Adv. Sci. 5, 1801612 (2018)

    Google Scholar 

  22. Q. Yan, X. Li, Q. Zhao, G. Chen, J. Hazard. Mater. 209, 385 (2012)

    Google Scholar 

  23. S. Sharma, N. Khare, Adv. Powder Technol. 29, 3336 (2018)

    CAS  Google Scholar 

  24. S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49, 3428 (2010)

    CAS  Google Scholar 

  25. Z.H. Ibupoto, S. Elhag, M.S. AlSalhi, O. Nur, M. Willander, Electroanalysis 26, 1773 (2014)

    CAS  Google Scholar 

  26. S.A. Makhlouf, Z.H. Bakr, K.I. Aly, M.S. Moustafa, Superlattices Microstruct. 64, 107 (2013)

    CAS  Google Scholar 

  27. Y. Zhang, Y. Chen, T. Wang, J. Zhou, Y. Zhao, Microporous Mesoporous Mater. 114, 257 (2008)

    CAS  Google Scholar 

  28. S. Liu, R. Zhang, W. Lv, F. Kong, W. Wang, Int. J. Electrochem. Sci 13, 3843 (2018)

    CAS  Google Scholar 

  29. D. Wang, Q. Wang, T. Wang, Inorg. Chem. 50, 6482 (2011)

    CAS  Google Scholar 

  30. L.T. Hoa, J.S. Chung, S.H. Hur, Sens. Actuators B 223, 76 (2016)

    CAS  Google Scholar 

  31. V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 252, 7487 (2006)

    CAS  Google Scholar 

  32. R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, V. Ravikumar, Spectrochim. Acta Part A 121, 746 (2014)

    CAS  Google Scholar 

  33. G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Int. J. Antimicrob. Agents 33, 587 (2009)

    CAS  Google Scholar 

  34. R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, J. Ind. Eng. Chem. 31, 173 (2015)

    CAS  Google Scholar 

  35. A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 88, 347 (2013)

    CAS  Google Scholar 

  36. Y. Li, J. Liang, Z. Tao, J. Chen, Mater. Res. Bull. 43, 2380 (2008)

    CAS  Google Scholar 

  37. K. Lamei, H. Eshghi, M. Bakavoli, S.A. Rounaghi, E. Esmaeili, Catal. Commun. 92, 40 (2017)

    CAS  Google Scholar 

  38. L.H. Kong, X.H. Chen, L.G. Yu, Z.S. Wu, P.Y. Zhang, A.C.S. Appl, Mater. Interfaces 7, 2616 (2015)

    CAS  Google Scholar 

  39. M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 258, 3039 (2012)

    CAS  Google Scholar 

  40. R.K.K. Gupta, F. Yakuphanoglu, F.M.M. Amanullah, Band Gap Eng. Nanostruct. 43, 1666 (2011)

    CAS  Google Scholar 

  41. R.A. Soomro, Z.H. Ibupoto, M.I. Abro, M. Willander, Sens. Actuators B 209, 966 (2015)

    CAS  Google Scholar 

  42. L. Fan, L. Tang, H. Gong, Z. Yao, R. Guo, J. Mater. Chem. 22, 16376 (2012)

    CAS  Google Scholar 

  43. T.R. Mandlimath, B. Gopal, J. Mol. Catal. A 350, 9 (2011)

    CAS  Google Scholar 

  44. J. Xiao, B. Chen, X. Liang, R. Zhang, Y. Li, Catal. Sci. Technol. 1, 999 (2011)

    CAS  Google Scholar 

  45. D. Vikraman, H.J. Park, RSC Adv. 6, 86101 (2016)

    CAS  Google Scholar 

  46. E. Sharifi, A. Salimi, E. Shams, A. Noorbakhsh, M.K. Amini, Biosens. Bioelectron. 56, 313 (2014)

    CAS  Google Scholar 

  47. A. Qurashi, Z. Zhang, M. Asif, T. Yamazaki, Int. J. Hydrogen Energy 40, 15801 (2015)

    CAS  Google Scholar 

  48. Y.H. Ko, G. Nagaraju, J.S. Yu, Nanoscale 7, 2735 (2015)

    CAS  Google Scholar 

  49. M. Fraune, U. Rüdiger, G. Güntherodt, S. Cardoso, P. Freitas, Appl. Phys. Lett. 77, 3815 (2000)

    CAS  Google Scholar 

  50. R. Raza, Q. Liu, J. Nisar, X. Wang, Y. Ma, B. Zhu, Electrochem. Commun. 13, 917 (2011)

    CAS  Google Scholar 

  51. Y.B. Mollamahale, Z. Liu, Y. Zhen, Z.Q. Tian, D. Hosseini, L. Chen, P.K. Shen, Int. J. Hydrogen Energy 42, 7202 (2017)

    CAS  Google Scholar 

  52. A. Diallo, A.C. Beye, T.B. Doyle, E. Park, M. Maaza, Green Chem. Lett. Rev. 8, 30 (2015)

    CAS  Google Scholar 

  53. R. Srivastava, M.U. Anu Prathap, R. Kore, Colloids Surf. A 392, 271 (2011)

    CAS  Google Scholar 

  54. M. Elango, M. Deepa, R. Subramanian, A. Mohamed Musthafa, Polym. Plast. Technol. Eng. 57, 1440 (2018)

    CAS  Google Scholar 

  55. P. Sheena, K. Priyanka, N. Aloysius, B. Sabu, T. Varghese, Nanosyst. Math. 5, 441 (2014)

    CAS  Google Scholar 

  56. V. Sudha, S.M. Senthil Kumar, R. Thangamuthu, J. Alloys Compd. 744, 621 (2018)

    CAS  Google Scholar 

  57. M.Y. Ge, L.Y. Han, U. Wiedwald, X.B. Xu, C. Wang, K. Kuepper, P. Ziemann, J.Z. Jiang, Nanotechnology 21, 5 (2010)

    Google Scholar 

  58. G. Bai, H. Dai, J. Deng, Y. Liu, K. Ji, Catal. Commun. 27, 148 (2012)

    CAS  Google Scholar 

  59. H. Sun, M. Ahmad, J. Zhu, Electrochim. Acta 89, 199 (2013)

    CAS  Google Scholar 

  60. M. Harilal, B. Vidyadharan, I.I. Misnon, G.M. Anilkumar, A. Lowe, J. Ismail, M.M. Yusoff, R. Jose, A.C.S. Appl, Mater. Interfaces 9, 10730 (2017)

    CAS  Google Scholar 

  61. J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu, Q. Xue, CrystEngComm 14, 5879 (2012)

    CAS  Google Scholar 

  62. S. Chakrabarty, K. Chatterjee, Nanosci. Methods 1, 213 (2012)

    Google Scholar 

  63. R. Sivaraj, P.K.S.M. Rahman, P. Rajiv, S. Narendhran, R. Venckatesh, Spectrochim. Acta Part A 129, 255 (2014)

    CAS  Google Scholar 

  64. A. Diallo, K. Kaviyarasu, S. Ndiaye, B.M. Mothudi, A. Ishaq, V. Rajendran, M. Maaza, Green Chem. Lett. Rev. 11, 166 (2018)

    CAS  Google Scholar 

  65. A.S. Bhadwal, R.M. Tripathi, R.K. Gupta, N. Kumar, R.P. Singh, A. Shrivastav, RSC Adv. 4, 9484 (2014)

    CAS  Google Scholar 

  66. H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, J. Cryst. Growth 244, 88 (2002)

    CAS  Google Scholar 

  67. X. Li, X. Zhang, Z. Li, Y. Qian, Solid State Commun. 137, 581 (2006)

    CAS  Google Scholar 

  68. G. Boschloo, A. Hagfeldt, J. Phys. Chem. B 105, 3039 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurdan Kurnaz Yetim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yetim, N.K., Aslan, N., Sarıoğlu, A. et al. Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J Mater Sci: Mater Electron 31, 12238–12248 (2020). https://doi.org/10.1007/s10854-020-03769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03769-x

Navigation