Skip to main content
Log in

Morphology effect on photocatalytic activity of self-doped ZnO nanoflowers

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, a flowerlike nanostructure of zinc oxide (ZnO) was synthesized using a simple hydrothermal method. Systematic experiments were carried out to investigate the factors that affect the morphology of the samples. Extensive research is conducted on nanostructured ZnO materials using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and UV–visible diffuse reflectance spectroscopy (UV–Vis DRS). The XRD and FE-SEM analyses were used to determine the particle size of the synthesized nanostructure ZnO. It was revealed that the flowerlike crystallites had an average size of around 55 nm. Additionally, the UV–Vis DRS analysis provided information on the band gap energy of the ZnO nanostructure, which is a crucial parameter for its photocatalytic activity. The results indicated that the synthesized ZnO nanostructure had a narrow band gap, which enhanced its ability to absorb UV light and generate electron–hole pairs for photocatalysis. Metal oxide semiconductors are considered to be among the leading front-runners in the field of photocatalysis owing to their exceptional physical features, durability, and cost-effectiveness. Since photocatalysis offers such a broad variety of applications in fields such as wastewater treatment and environmental remediation, there has been a significant uptick in interest in the field. The synthesized ZnO powder has excellent photocatalytic degradation capabilities for rhodamine B dye (RhB). In 3 h, 20 mL of RhB solution containing 15 mg L−1 was destroyed by 300 mg of flowerlike ZnO powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Kouser, A. Hezam, K. Byrappa, S.A. Khanum, Optik 245, 167236 (2021)

    Article  CAS  Google Scholar 

  2. M.D.N. Ramos, C.S. Santana, C.C.V. Velloso, A.H.M. da Silva, F. Magalhães et al., Process Saf. Environ. Prot. 155, 366 (2021)

    Article  CAS  Google Scholar 

  3. I Mohsen, MM Ghafurian, MM Khorasani, RM, and O Mahian (2021) J. Taiwan Inst. Chem. Eng. 128: 253

  4. S.H. Lin, L.C. Ming, Water Res. 31, 868 (1997)

    Article  CAS  Google Scholar 

  5. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Dos Santos, Andre B, Francisco J Cervantes, and Jules B Van Lier 2007 Bioresour. Technol. 98 2369

  7. X. Shen, H. Shao, Y. Liu, Y. Zhai, J. Mater Sci. Technol. 51, 1 (2020)

    Article  CAS  Google Scholar 

  8. A. Aklilu, B. Birlie, B. Teshome, M. Jemberie, CSCEE 6, 100230 (2022)

    Google Scholar 

  9. Sana Khan, Abdul Malik, Environ. Deterior. Human Health Natl. Anthropog. Determ. 55, 71 (2014)

    Google Scholar 

  10. L.T.T. Nguyen, D.-V. Vo, L.T.H. Nguyen, A.T.T. Duong, H.Q. Nguyen et al., Environ. Technol. Innov. 25, 102130 (2022)

    Article  CAS  Google Scholar 

  11. D. Georgiou, A. Aivazidis, J. Hatiras, K. Gimouhopoulos, Water Res. 37, 2248 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. S. Mustafa, Y.E. Unsal, E. Yilmaz, M. Tuzen, Food Chem. Toxicol. 49, 1796 (2011)

    Article  Google Scholar 

  13. A.-B.A. Khaled, A.A. Al-Gheethi, P.S. Kumar, R.M. Saphira, R. Mohamed, H. Yusof et al., Chemosphere 287, 132162 (2022)

    Article  Google Scholar 

  14. I.S. Shehu, H.F. Babamale, Asian. J. Chem. Sci. 7, 25 (2020)

    Google Scholar 

  15. E. Baldev, D.M. Ali, A. Ilavarasi, D. Pandiaraj, K.A. Sheik, S. Ishack, N. Thajuddin, Colloids Surf. B Biointerfaces 105, 207 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, RSC Adv. 5(39), 30801 (2015)

    Article  CAS  Google Scholar 

  17. S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur, M. Amini, J. Environ. Chem. Eng. 8, 103726 (2020)

    Article  CAS  Google Scholar 

  18. A.K. Al-Buriahi, A.A. Al-Gheethi, P.S. Kumar, R.M.S.R. Mohamed, H. Yusof, A.F. Alshalif, N.A. Khalifa, Chemosphere 287, 132162 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. C.R. Holkar, J.J. Ananda, V.P. Dipak, M.M. Naresh, B.P. Aniruddha, J. Environ. Manage. 182, 351 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. B.M. Abdullah, A. Hezam, K. Namratha, R. Viswanath, Q.A. Drmosh, H.S.B. Naik et al., J. Environ. Chem. Eng. 7, 103412 (2019)

    Article  Google Scholar 

  21. A. Hezam, K. Namratha, Q.A. Drmosh, Z.H. Yamani, K. Byrappa, Ceram Int. 43, 5292 (2017)

    Article  CAS  Google Scholar 

  22. M.R. Bindhu, K. Ancy, M. Umadevi, G.A. Esmail, N.A. Al-Dhabi, M.V. Arasu, J. Photochem. Photobiol. B Biol. 210, 11196 (2020)

    Article  Google Scholar 

  23. N.P. Shetti, J.M. Shweta, I. Davalasab, R.R. Kakarla, S.S. Shyam, M.A. Tejraj, Electroanalysis 31, 1040 (2019)

    Article  CAS  Google Scholar 

  24. W.-B. Zhao, D. Meng-Ru, K.-K. Liu, R. Zhou, R.-N. Ma, Z. Jiao et al., ACS Appl. Mater. Interfaces 12, 13305 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. M. Aziznezhad, E.K. Goharshadi, R. Mehrkhah, M.M. Ghafurian, Mater. Res. Bull. 149, 111705 (2022)

    Article  CAS  Google Scholar 

  26. R. Mehrkhah, E.K. Goharshadi, E. Lichtfouse, H.S. Ahn, S. Wongwises, Yu. Wei, O. Mahian, Environ. Chem. Lett. 21, 285 (2023)

    Article  CAS  Google Scholar 

  27. Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen, Purif. Technol. 62, 727 (2008)

    Article  CAS  Google Scholar 

  28. Y. Qu, R. Huang, W. Qi, M. Shi, Su. Rongxin, Z. He, Catal. Today 355, 397 (2020)

    Article  CAS  Google Scholar 

  29. R.V. Jeevan, R. Ghosh, A. Girigoswami, K. Girigoswami, BBA Adv. 2, 100051 (2022)

    Article  Google Scholar 

  30. R. Kumar, G. Kumar, Nanosci. Nanotechnol. Lett. 6, 631 (2014)

    Article  CAS  Google Scholar 

  31. S.K. Kansal, A.H. Ali, S. Kapoor, D.W. Bahnemann, Purif. Technol. 80, 125 (2011)

    Article  CAS  Google Scholar 

  32. A.E. Siami, M. Montazer, Fibers Polym. 22, 97 (2021)

    Article  Google Scholar 

  33. Y. Xie, Y. Pan, P. Cai, Food Chem. 368, 130784 (2022)

    Article  CAS  PubMed  Google Scholar 

  34. L. Sze-Mun, C.-L. Lim, J.-C. Sin, H. Zeng, H. Lin, H. Li, Mater. Lett. 305, 130818 (2021)

    Article  Google Scholar 

  35. K.G. Chandrappa, T.V. Venkatesha, K. Vathsala, C. Shivakumara, J. Nanopart Res. 12, 2667 (2010)

    Article  CAS  Google Scholar 

  36. RM Tripathi, AS Bhadwal, RK Gupta, P Singh, A Shrivastav, and BR Shrivastav (2014) J. Photochem. Photobiol. B, Biol. 141: 288

  37. O. Eskikaya, S. Ozdemir, G. Tollu, N. Dizge, R. Ramaraj, A. Manivannan, D. Balakrishnan, Chemosphere 306, 135389 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. Y.J. Zhai, J.H. Li, X. Fang, X.Y. Chen, F. Fang, X.Y. Chu, Z.P. Wei, X.H. Wang, Mater. Sci. Semicond. Process. 26, 225 (2014)

    Article  CAS  Google Scholar 

  39. T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam, R. Selvaraj, J. Photochem. Photobiol. B Biol. 199, 111621 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111621

    Article  CAS  Google Scholar 

  40. P.V. Adhyapak, S.P. Meshram, I.S. Mulla, S.K. Pardeshi, D.P. Amalnerkar, Mater. Sci. Semicond. Process. 27, 197 (2014)

    Article  CAS  Google Scholar 

  41. Qi. Kezhen, B. Cheng, Yu. Jiaguo, W. Ho, J. Alloys Compd. 727, 792 (2017)

    Article  Google Scholar 

  42. R.Q. Inamur, M. Ahmad, S.K. Misra, M. Lohani, Mater. Lett. 91, 170 (2013)

    Article  Google Scholar 

  43. R. Stanley, J.A. Jebasingh, P.K. Stanley, P. Ponmani, M.E. Shekinah, J. Vasanthi, Optik 231, 166518 (2021)

    Article  Google Scholar 

  44. R.H. Waghchaure, V.A. Adole, B.S. Jagdale, Inorg. Chem. Commun. 143, 109764 (2022)

    Article  CAS  Google Scholar 

  45. P.A. Luque, H.E. Garrafa-Galvez, C.A. Garcia-Maro, C.A. Soto-Robles, Optik. 258, 168937 (2022)

    Article  CAS  Google Scholar 

  46. M. Soma, S. Chatterjee, P. Basnet, J. Mukherjee, Environ. Nanotechnol. Monit. Manag. 14, 100386 (2020)

    Google Scholar 

Download references

Acknowledgements

We, the authors, express our sincere gratitude to the University of Mysore, Mysore, for the laboratory facilities provided to us. One of the authors SK is indebted to the Department of

Minority, Government of Karnataka, for providing minority fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukath Ara Khanum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouser, S., Hezam, A., Namratha, K. et al. Morphology effect on photocatalytic activity of self-doped ZnO nanoflowers. J IRAN CHEM SOC 20, 2561–2568 (2023). https://doi.org/10.1007/s13738-023-02854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02854-2

Keywords

Navigation