Skip to main content
Log in

Structural and photoluminescence properties of Eu3+ activated ZnAl2O4 orange-red phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Europium doped zinc aluminum oxide (Zn0.93Al2O4:Eu0.07) was successfully prepared by a combustion method at 550 °C, in which urea, glycine, urea–glycine, citric acid, carbohydrazide, tartaric acid, carbohydrazide–glycine, oxalic acid–glycine, and tetraformaltrisazine were used as a fuel (complexing reagents). The structural and morphological properties were measured and elemental analysis carried out using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and energy-dispersive X-ray (EDX), respectively. The photoluminescence (PL) spectra were monitored by excitation spectra (λex. = 378 nm) and emission spectra (λem. = 614 nm), to assess various complexing reagents in which urea was found to be the most efficient for synthesizing ZnAl2O4:Eu3+orange-red phosphor. The discussed zinc aluminate (U-1) phosphor has a higher luminescence intensity at 614 nm. It is concluded, therefore, that the ZnAl2O4:Eu phosphor can be used widely in various solid-state lighting as an orange-red phosphor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.K. Verma, A. Verma, G.V. Bramhe, Shifting and enhanced photoluminescence performance of the Sr1−xEuxMgAl10O17 phosphor. J. Alloys Compd 774, 1168–1180 (2019)

    CAS  Google Scholar 

  2. J.J. Kingsley, K. Suresh, K.C. Patil, Combustion synthesis of fine-particle metal aluminates. J. Mater. Sci. 25, 1305–1312 (1990)

    CAS  Google Scholar 

  3. L. Chen, C.-C. Lin, C.-W. Yeh, R.-S. Liu, Light converting inorganic phosphors for white light-emitting diodes. Materials 3, 2172–2195 (2010)

    CAS  Google Scholar 

  4. V.B. Pawadea, H.C. Swartz, S.J. Dhoble, Review of rare-earth activated blue emission phosphors prepared by combustion synthesis. Renew. Sustain. Energy Rev. 52, 596–612 (2015)

    Google Scholar 

  5. M. Peng, G. Hong, Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu. J. Lumin. 127, 735–740 (2007)

    CAS  Google Scholar 

  6. T. Justel, H. Nikol, C. Ronda, New developments in the field of luminescent materials for lighting and displays. Angew. Chem. Int. Ed. 37, 3084–3103 (1998)

    CAS  Google Scholar 

  7. Z. Lei, D. Meng, Z. Gao, X. Zhang, Q. Yang, Y. Wang, Effects of Eu3+ concentration and heat-treatment on photoluminescence properties of Zn1−xEuxAl2O4 phosphors. J. Mater. Sci. Mater. Electron. 27, 1840–1846 (2016)

    CAS  Google Scholar 

  8. T. Tangcharoen, J.T. Thienprasert, C. Kongmark, Optical properties and versatile photocatalytic degradation ability of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J. Mater. Sci. Mater. Electron. 29, 1840–1846 (2018)

    Google Scholar 

  9. X. Wu, Z. Wei, X. Chen, X. Wang, H. Yang, J. Jiang, Optical properties and microstructure of Ni doped ZnAl2O4 nanopowders synthesized by sol–gel method. J. Mater. Sci. Mater. Electron. 26, 6606–6611 (2015)

    CAS  Google Scholar 

  10. J.J. Kingsley, K.C. Patil, A novel combustion process for the synthesis of fine particle a-alumina and related oxide materials. Mater. Lett. 6, 427–432 (1988)

    CAS  Google Scholar 

  11. M. Kumar, M. Mohapatra, V. Natarajan, Luminescence characteristics of blue emitting ZnAl2O4:Ce nano phosphors. J. Lumin. 149, 118–124 (2014)

    CAS  Google Scholar 

  12. S.J. Lee, S. Cho, Synthesis and luminescence properties of ZnAl2O4:RE3+ (RE = Eu, Sm) phosphors. J. Korean Phys. Soc. 64, 135–139 (2014)

    CAS  Google Scholar 

  13. V. Singh, V. Natrajan, J.J. Zhu, Studies on Eu doped Ba and Zn aluminate phosphor prepared by combustion synthesis. Opt. Mater. 29, 1447–1451 (2007)

    CAS  Google Scholar 

  14. C. He, H. Ji, Z. Huang, X. Zhang, Y. Liu, M. Fang, X. Wu, X. Min, Preparation, structure, luminescence properties of europium doped zinc spinel structure green-emitting phosphor ZnAl2O4:Eu2+. J. Rare Earths 36(9), 931–938 (2018)

    CAS  Google Scholar 

  15. X.Y. Chen, C. Ma, Spherical porous ZnAl2O4:Eu3+ phosphors: PEG-assisted hydrothermal growth and photoluminescence. Opt. Mater. 32(3), 415–421 (2010)

    CAS  Google Scholar 

  16. K. Trilok Pathak, A. Kumar, C.W. Swart, H.C. Swart, R.E. Kroona, Effect of fuel content on luminescence and antibacterial properties of zinc oxide nanocrystalline powders synthesized by the combustion method. RSC Adv. 6, 97770–97782 (2016)

    Google Scholar 

  17. S. Ekambaram, K.C. Patil, Rapid synthesis and properties of FeVO4, AlVO4, YVO4 and Eu3+-doped YVO4. J. Alloy Compd 217, 104–107 (1995)

    CAS  Google Scholar 

  18. A.K. Verma, A. Verma, Synthesis, characterization, mechano-luminescence, thermoluminescence, and antibacterial properties of SrMgAl10O17:Eu phosphor. J. Alloys Compd 802, 394–408 (2019)

    CAS  Google Scholar 

  19. A.K. Verma, A. Verma, G.V. Bramhe, I.P. Sahu, Optical studies of the Ba1−xMgAl10O17:Eux phosphor synthesis by combustion route. J. Alloys Compd 769, 831–842 (2018)

    CAS  Google Scholar 

  20. M. Zhou, Z. Wei, H. Qiao, L. Zhu, H. Yang, T. Xia, Particle size and pore structure characterization of silver nanoparticles prepared by confined arc plasma. J. Nanomater. 2009, 1–5 (2008)

    Google Scholar 

  21. R.J. Wiglusz, T. Grzyb, A. Bednarkiewicz, S. Lis, W. Strek, Investigation of structure, morphology, and luminescence properties in blue-red emitter, europium-activated ZnAl2O4 nanospinels. Eur. J. Inorg. Chem. 21, 3418–3426 (2012)

    Google Scholar 

  22. A.K. Verma, S.K. Pathak, A. Verma, G.V. Bramhe, I.P. Sahu, Tuning of luminescent properties of Zn1−xMgAl10O17:Eux nano phosphor. J. Alloys Compd 764, 1021–1032 (2018)

    CAS  Google Scholar 

  23. C.C. Hwang, J.S. Tsai, T.H. Huang, Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility and reaction mechanism. Mater. Chem. Phys. 93, 330–336 (2005)

    CAS  Google Scholar 

  24. C.C. Hwang, J.S. Tsai, T.H. Huang, C.H. Peng, S.Y. Chen, Combustion synthesis of Ni–Zn ferrite powder—influence of oxygen balance value. J. Solid State Chem. 178, 382–389 (2005)

    CAS  Google Scholar 

  25. K.C. Patil, S.T. Aruna, S. Ekambaram, Combustion synthesis. Curr. Opin. Solid State Mater. Sci. 2, 158–165 (1997)

    CAS  Google Scholar 

  26. M.R. Quirino, M.J.C. Oliveira, D. Keyson, G.L. Lucena, J.B.L. Oliveira, L. Gama, Synthesis of zinc aluminate with high surface area by microwave hydrothermal method applied in the transesterification of soybean oil (biodiesel). Mater. Res. Bull. 74, 124–128 (2016)

    CAS  Google Scholar 

  27. M. Zawadzki, Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave-hydrothermal synthesis of ZnAl2O4). Solid State Sci. 8, 14–18 (2006)

    CAS  Google Scholar 

  28. V. Singh, V. Natarajan, J.J. Zhu, Studies on Eu doped Ba and Zn aluminate phosphors prepared by combustion synthesis. Opt. Mater. 29, 1447–1451 (2007)

    CAS  Google Scholar 

  29. A. Deshmukh, S.J. Dhoble, A. Kumar, S.V. Godbole, M.K. Bhide, D.R. Peshwe, New Eu activated ZnMgAl10O17 nano-phosphors. J. Alloys Compd 475, 343–346 (2009)

    CAS  Google Scholar 

  30. T. Mimani, Fire synthesis: preparation of alumina related products. Resonance 5, 50–57 (2000)

    CAS  Google Scholar 

  31. L. Wang, H. Zhang, Y. Hui Li, P. Liang, Y. Shen, Enhanced luminescence in the SrMgAl10O17:Eu2+ blue phosphor prepared by a hybrid urea-sol combustion route. Int. J. Appl. Ceram. Technol. 13(1), 185–190 (2016)

    CAS  Google Scholar 

  32. Z.H. Zhang, Y.H. Wang, Enhanced emission and improved thermal stability of BaMgAl10O17:Eu2+ phosphor via additional Mg2+ doping. Mater. Lett. 61, 4128–4130 (2007)

    CAS  Google Scholar 

  33. E. Martinez-Sanchez, M. Garcia-Hipolito, J. Guzman, F. Ramos-Brito, J. SantoyoSalazar, R. Martinez-Martinez, O. Alvarez-Fregoso, M.I. Ramos-Cortes, J.J. Mendez-Delgado, C. Falcony, Cathodoluminescent characteristics of Sm-doped ZnAl2O4 nanostructured powders. Phys. Status Solidi (a) 202(1), 102–107 (2005)

    CAS  Google Scholar 

  34. Y.F. Wu, Y.T. Nien, Y.J. Wang, I.G. Chen, Enhancement of photoluminescence and color purity of CaTiO3:Eu phosphor by Li doping. J. Am. Ceram. Soc. 95(4), 1360–1366 (2012)

    CAS  Google Scholar 

  35. X.L. Yang, X.B. Xu, J. Zhao, J.S. Dang, Z. Huang, X.G. Yan, G.J. Zhou, D.D. Wang, Phosphorescent platinum(II) complexes bearing 2-vinylpyridine-type ligands: synthesis, electrochemical and photophysical properties, and tuning of electrophosphorescent behavior by main-group moieties. Inorg. Chem. 53, 12986–13000 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of the research work of the first author leading to PhD Degree. Authors are thankful to Dr. Harisingh Gour University Sagar (M.P.), India for providing experimental facilities available in its Sophisticated Instrumentation Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Pathak.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, S.K., Verma, A. & Verma, A. Structural and photoluminescence properties of Eu3+ activated ZnAl2O4 orange-red phosphor. J Mater Sci: Mater Electron 31, 16137–16149 (2020). https://doi.org/10.1007/s10854-020-03715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03715-x

Navigation