Skip to main content
Log in

Enhancement of DC breakdown performance of LDPE films based on silver nanoparticle surface modification of biomimetic dopamine technology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low density polyethylene (LDPE) film samples with the surface treatment by silver nanoparticles based on the biomimetic dopamine technology are obtained and the influence of the treatment on the space charge behavior as well as DC breakdown performance of the selected insulating system is studied. The results obtained by the energy dispersive spectrometer and the scanning electron microscope indicate that Ag particles with nanoscale or larger size form and distribute uniformly on the surface of LDPE modified in the dopamine solution, silver nitrate solution (AgNO3) and dopamine solution in sequence. Space charge profile measured by the pulsed electro-acoustic method shows that homo-charge injection is suppressed with proper surface treatment. DC breakdown strength increases initially and then decreases with the increase of the size of Ag particles. The electrical breakdown strength of the specimen D6-Ag1-D24 is the highest, which increases by 9.5% compared with that of untreated LDPE. Finally, it is considered that the treatment of LDPE based on the biomimetic dopamine technology changes the chemical and physical properties of the surface through forming a three-layer structure, which plays a similar role as the nano-dielectrics. Such treatment can impact the space charge injection and accumulation, and further the corresponding DC breakdown strength, which provides a novel method to optimize the dielectric strength of the polymeric insulating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.C. Montanari, P. Seri, L.A. Dissado, IEEE Trans. Dielectr. Electr. Insul. 26(2), 634–641 (2019)

    CAS  Google Scholar 

  2. S. Li, Y. Zhu, D. Min, G. Chen, Sci. Rep. 6, 32588 (2016)

    CAS  Google Scholar 

  3. H. Li, S. Zhai, L.B. Hu, J. Chen, J. Mater. Sci.: Mater. Electron. 30, 9015–9021 (2019)

    CAS  Google Scholar 

  4. Z.M. Yan, K. Yang, Y.Y. Zhang, S.H. Wang, J.Y. Li, J. Mater. Sci.: Mater. Electron. 30, 20605–20613 (2019)

    CAS  Google Scholar 

  5. O. Gallot-Lavallée, G. Teyssèdre, C. Laurent, S. Rowe, J. Phys. D 38(12), 2017–2025 (2005)

    Google Scholar 

  6. M. Taleb, G. Teyssèdre, S. Le Roy, C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 20(1), 311–320 (2013)

    CAS  Google Scholar 

  7. C. Zheng, B. Guan, H. Zhao, J. Yang, IEEE Trans. Dielectr. Electr. Insul. 23(2), 1183–1189 (2016)

    CAS  Google Scholar 

  8. A. Mohamad, G. Chen, Q. Chen, IEEE Trans. Dielectr. Electr. Insul. 24(6), 3786–3793 (2017)

    CAS  Google Scholar 

  9. A. Mohamad, G. Chen, Y. Zhang, Z. An, IEEE Trans. Dielectr. Electr. Insul. 22(1), 101–108 (2015)

    CAS  Google Scholar 

  10. B. Du, J. Li, H. Du, Y. Yin, IEEE Trans. Dielectr. Electr. Insul. 21(4), 1817–1823 (2014)

    CAS  Google Scholar 

  11. S. Li, N. Zhao, Y. Nie, X. Wang, G. Chen, G. Teyssedre, IEEE Trans. Dielectr. Electr. Insul. 22(1), 92–100 (2015)

    CAS  Google Scholar 

  12. S. Akram, Y. Yang, X. Zhong, S. Bhutta, G. Wu, J. Castellon, K. Zhou, IEEE Trans. Dielectr. Electr. Insul. 24(6), 3505–3514 (2017)

    CAS  Google Scholar 

  13. L. Milliere, K. Makasheva, C. Laurent, B. Despax, L. Boudou, G. Teyssedre, J. Phys. D 49(1), 1–13 (2015)

    Google Scholar 

  14. Y. Li, M. Tian, Z. Lei, J. Zhang, J. Phys. D 51(12), 125309 (2018)

    Google Scholar 

  15. N. Zhao, Y. Nie, S. Li, AIP Adv. 8(4), 045103 (2018)

    Google Scholar 

  16. Y. Nie, L. Yang, N. Zhao, D. Min, S. Li, IEEE Trans. Dielectr. Electr. Insul. 24(4), 2522–2530 (2017)

    Google Scholar 

  17. Y. Liu, X. Chen, J. Xin, Nanotechnology 17(13), 3259–3263 (2006)

    CAS  Google Scholar 

  18. L. Zhu, Y. Lu, Y. Wang, L. Zhang, W. Wang, Appl. Surf. Sci. 258(14), 5387–5393 (2012)

    CAS  Google Scholar 

  19. Z. Liu, S. Qu, J. Weng, Prog. Chem. 27, 212–219 (2015). (in Chinese)

    CAS  Google Scholar 

  20. E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, C. Detrembleur, Prog. Polym. Sci. 38(46), 236–270 (2013)

    CAS  Google Scholar 

  21. Q. Wei, K. Achazi, H. Liebe, A. Schulz, P.M. Noeske, I. Grunwald, R. Haag, Angew. Chem. 53(43), 11650–11655 (2014)

    CAS  Google Scholar 

  22. B.Y. Zhang, W.Q. Gao, P.F. Chu, Z. Zhang, G.X. Zhang, J. Mater. Sci.: Mater. Electron. 29, 1964–1974 (2018)

    Google Scholar 

  23. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 26(1), 276–283 (2019)

    CAS  Google Scholar 

  24. U. Khaled, A. Beroual, IEEE Trans. Dielectr. Electr. Insul. 26(2), 625–633 (2019)

    CAS  Google Scholar 

  25. Y. Zhou, J. Wang, H. Chen, Q. Nie, Q. Sun, Y. Wang, J. Electrostat. 67(2–3), 422–425 (2009)

    CAS  Google Scholar 

  26. G. Chen, J. Zhao, S. Li, L. Zhong, App. Phys. Lett. 100(22), 222904 (2012)

    Google Scholar 

  27. G. Blaise, J. Appl. Phys. 77(7), 2916–2927 (1995)

    CAS  Google Scholar 

  28. S. Li, D. Min, W. Wang, G. Chen, IEEE Trans. Dielectr. Electr. Insul. 23(6), 3476–3485 (2016)

    CAS  Google Scholar 

  29. K.C. Kao, J. Phys. D 55(3), 752–755 (1984)

    CAS  Google Scholar 

  30. K.C. Kao, in IEEE 6th International Conference Properties and Applications of Dielectric Materials (ICPADM), (2000), 1–17

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation (No. 43XB3801XB) and China National Funds for International (regional) projects of cooperation and exchange (No. 51161130524).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjie Nie or Shengtao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Ren, H., Zhao, N. et al. Enhancement of DC breakdown performance of LDPE films based on silver nanoparticle surface modification of biomimetic dopamine technology. J Mater Sci: Mater Electron 31, 11560–11568 (2020). https://doi.org/10.1007/s10854-020-03704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03704-0

Navigation