Skip to main content

Advertisement

Log in

Branched heterostructures of nickel–copper phosphides as an efficient electrocatalyst for the hydrogen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Identifying highly efficient, abundant, cheap, Pt-free electrocatalysts for splitting water to produce hydrogen is critical to address the issues related to the fossil fuel consumption and environmental pollution. Nickel–copper phosphides have attracted interest as synergistic components with superior electrocatalytic activity for the hydrogen evolution reaction (HER). Herein, we report on branched heterostructures of nickel–copper phosphides (CuNi/P) grown on a 3D nickel foam (NF) substrate that were synthesized using a facile hydrothermal method and subsequent low-temperature phosphidization. These unique, branched heterostructures exhibited a strong synergetic effect between various metallic phosphides, and provided more active sites and improved the material’s electronic conductivity to produce a higher charge transfer rate. Consequently, the synthesized CuNi/P possessed superior electrocatalytic performance with a low overpotential of 99 mV at current density of 10 mA/cm2, and a low Tafel slope of 79 mV/decade for hydrogen evolution in alkaline solution. In addition, this electrocatalyst exhibited electrochemical resilience for at least 10 h, which was a good indication of its possible application for large-term water electrolysis. This reported strategy may provide a path for the development of other bimetallic phosphide materials with superior catalytic performance for the hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Chow, R.J. Kopp, P.R. Portney, Energy resources and global development. Science 302, 1528–1531 (2003)

    Google Scholar 

  2. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    CAS  Google Scholar 

  3. X.Y. Yu, X.W. Lou, Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 8, 1701592 (2018)

    Google Scholar 

  4. K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, Q. Yan, Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14, 1703257 (2018)

    Google Scholar 

  5. G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, X. Feng, Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 30, 1706279 (2018)

    Google Scholar 

  6. X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, S. Yang, Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 137, 11900–11903 (2015)

    CAS  Google Scholar 

  7. J.X. Feng, H. Xu, Y.T. Dong, X.F. Lu, Y.X. Tong, G.R. Li, Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed. 56, 2960–2964 (2017)

    CAS  Google Scholar 

  8. X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015)

    CAS  Google Scholar 

  9. A.P. Tiwari, D. Kim, Y. Kim, O. Prakash, H. Lee, Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy 28, 366–372 (2016)

    CAS  Google Scholar 

  10. T. Liu, S. Wang, Q. Zhang, L. Chen, W. Hu, C.M. Li, Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 54, 3343–3346 (2018)

    CAS  Google Scholar 

  11. Z. Zhu, H. Yin, C.T. He, M. Al-Mamun, P. Liu, L. Jiang, Y. Zhao, Y. Wang, H.G. Yang, Z. Tang, Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. 30, 1801171 (2018)

    Google Scholar 

  12. H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 1–8 (2015)

    CAS  Google Scholar 

  13. P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Precise tuning in platinum–nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 8, 1–9 (2017)

    Google Scholar 

  14. G.-R. Xu, J.-J. Hui, T. Huang, Y. Chen, J.-M. Lee, Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. J. Power Sources 285, 393–399 (2015)

    CAS  Google Scholar 

  15. P. Wang, K. Jiang, G. Wang, J. Yao, X. Huang, Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem. Int. Ed. 55, 12859–12863 (2016)

    CAS  Google Scholar 

  16. M. Zang, N. Xu, G. Cao, Z. Chen, J. Cui, L. Gan, H. Dai, X. Yang, P. Wang, Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catal. 8, 5062–5069 (2018)

    CAS  Google Scholar 

  17. A. Long, W. Li, M. Zhou, W. Gao, B. Liu, J. Wei, X. Zhang, H. Liu, Y. Liu, X. Zeng, MoS2 nanosheets grown on nickel chalcogenides: controllable synthesis and electrocatalytic origins for the hydrogen evolution reaction in alkaline solution. J. Mater. Chem. A 7, 21514–21522 (2019)

    CAS  Google Scholar 

  18. D. Merki, X. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011)

    CAS  Google Scholar 

  19. C. Tang, L. Xie, X. Sun, A.M. Asiri, Y. He, Highly efficient electrochemical hydrogen evolution based on nickel diselenide nanowall film. Nanotechnology 27, 20LT02 (2016)

    Google Scholar 

  20. B. Liu, Y.F. Zhao, H.Q. Peng, Z.Y. Zhang, C.K. Sit, M.F. Yuen, T.R. Zhang, C.S. Lee, W.J. Zhang, Nickel–cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 29, 1606521 (2017)

    Google Scholar 

  21. Y. Guo, D. Guo, F. Ye, K. Wang, Z. Shi, X. Chen, C. Zhao, Self-supported NiSe2 nanowire arrays on carbon fiber paper as efficient and stable electrode for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6, 11884–11891 (2018)

    CAS  Google Scholar 

  22. M. Zhou, Q. Weng, Z.I. Popov, Y. Yang, L.Y. Antipina, P.B. Sorokin, X. Wang, Y. Bando, D. Golberg, Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 12, 4148–4155 (2018)

    CAS  Google Scholar 

  23. B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186–19192 (2013)

    CAS  Google Scholar 

  24. Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016)

    CAS  Google Scholar 

  25. Y.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan, Y. Liu, Z.-H. Kang, E.-B. Wang, Y.-G. Li, Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C, Energy Environ. Sci. 10, 788–798 (2017)

    CAS  Google Scholar 

  26. J. Li, M. Yan, X. Zhou, Z.Q. Huang, Z. Xia, C.R. Chang, Y. Ma, Y. Qu, Mechanistic insights on ternary Ni2–xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv. Funct. Mater. 26, 6785–6796 (2016)

    CAS  Google Scholar 

  27. E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013)

    CAS  Google Scholar 

  28. Y. Pan, W. Hu, D. Liu, Y. Liu, C. Liu, Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 13087–13094 (2015)

    CAS  Google Scholar 

  29. Z. Zhou, L. Wei, Y. Wang, H.E. Karahan, Z. Chen, Y. Lei, X. Chen, S. Zhai, X. Liao, Y. Chen, Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. J. Mater. Chem. A 5, 20390–20397 (2017)

    CAS  Google Scholar 

  30. C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48, 73–80 (2018)

    Google Scholar 

  31. J. Chen, J. Liu, J.-Q. Xie, H. Ye, X.-Z. Fu, R. Sun, C.-P. Wong, Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range. Nano Energy 56, 225–233 (2019)

    CAS  Google Scholar 

  32. Y. Du, Z. Li, Y. Liu, Y. Yang, L. Wang, Nickel–iron phosphides nanorods derived from bimetallic-organic frameworks for hydrogen evolution reaction. Appl. Surf. Sci. 457, 1081–1086 (2018)

    CAS  Google Scholar 

  33. H. Du, X. Zhang, Q. Tan, R. Kong, F. Qu, A Cu3P-CoP hybrid nanowire array: a superior electrocatalyst for acidic hydrogen evolution reactions. Chem. Commun. 53, 12012–12015 (2017)

    CAS  Google Scholar 

  34. X.-D. Wang, Y.-F. Xu, H.-S. Rao, W.-J. Xu, H.-Y. Chen, W.-X. Zhang, D.-B. Kuang, C.-Y. Su, Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 9, 1468–1475 (2016)

    CAS  Google Scholar 

  35. L. Sha, J. Yin, K. Ye, G. Wang, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, The construction of self-supported thorny leaf-like nickel–cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 7, 9078–9085 (2019)

    CAS  Google Scholar 

  36. L. Wen, Y. Sun, C. Zhang, J. Yu, X. Li, X. Lyu, W. Cai, Y. Li, Cu-doped CoP nanorod arrays: efficient and durable hydrogen evolution reaction electrocatalysts at all pH values. ACS Appl. Energy Mater. 1, 3835–3842 (2018)

    CAS  Google Scholar 

  37. L. Yan, B. Zhang, J. Zhu, S. Zhao, Y. Li, B. Zhang, J. Jiang, X. Ji, H. Zhang, P.K. Shen, Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. J. Mater. Chem. A 7, 14271–14279 (2019)

    CAS  Google Scholar 

  38. X. Zhang, X. Zhang, H. Xu, Z. Wu, H. Wang, Y. Liang, Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 27, 1606635 (2017)

    Google Scholar 

  39. C. Du, M. Shang, J. Mao, W. Song, Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting. J. Mater. Chem. A 5, 15940–15949 (2017)

    CAS  Google Scholar 

  40. Y. Liu, X. Hua, C. Xiao, T. Zhou, P. Huang, Z. Guo, B. Pan, Y. Xie, Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 138, 5087–5092 (2016)

    CAS  Google Scholar 

  41. Y. Li, J. Xu, Z. Liu, H. Yu, Synthesis of Ni12P5 on Co3S4 material for effectively improved photocatalytic hydrogen production from water splitting under visible light. J. Mater. Sci. Mater. Electron. 30, 11694–11705 (2019)

    CAS  Google Scholar 

  42. S. Chu, W. Chen, G. Chen, J. Huang, R. Zhang, C. Song, X. Wang, C. Li, K.K. Ostrikov, Holey Ni–Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Appl. Catal. B 243, 537–545 (2019)

    CAS  Google Scholar 

  43. M. Asnavandi, B.H. Suryanto, W. Yang, X. Bo, C. Zhao, Dynamic hydrogen bubble templated NiCu phosphide electrodes for pH-insensitive hydrogen evolution reactions. ACS Sustain. Chem. Eng. 6, 2866–2871 (2018)

    CAS  Google Scholar 

  44. C.-C. Hou, Q.-Q. Chen, C.-J. Wang, F. Liang, Z. Lin, W.-F. Fu, Y. Chen, Self-supported cedarlike semimetallic Cu3P nanoarrays as a 3D high-performance Janus electrode for both oxygen and hydrogen evolution under basic conditions. ACS Appl. Mater. Interfaces 8, 23037–23048 (2016)

    CAS  Google Scholar 

  45. A. Han, H. Zhang, R. Yuan, H. Ji, P. Du, Crystalline copper phosphide nanosheets as an efficient janus catalyst for overall water splitting. ACS Appl. Mater. Interfaces 9, 2240–2248 (2017)

    CAS  Google Scholar 

  46. X. Zhang, W. Gu, E. Wang, Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst. Nano Res. 10, 1001–1009 (2017)

    CAS  Google Scholar 

  47. J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei, Z.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-micro Lett. 10, 75 (2018)

    CAS  Google Scholar 

  48. R. Daiyan, W.H. Saputera, Q. Zhang, E. Lovell, S. Lim, Y.H. Ng, X. Lu, R. Amal, 3D heterostructured copper electrode for conversion of carbon dioxide to alcohols at low overpotentials. Adv. Sustain. Syst. 3, 1800064 (2019)

    Google Scholar 

  49. R.K. Shervedani, A. Lasia, Study of the hydrogen evolution reaction on Ni–Mo–P electrodes in alkaline solutions. J. Electrochem. Soc. 145, 2219 (1998)

    CAS  Google Scholar 

  50. M. Popczyk, The influence of molybdenum and silicon on activity of Ni+W composite coatings in the hydrogen evolution reaction. Surf. Interface Anal. 40, 246–249 (2008)

    CAS  Google Scholar 

  51. R. Daiyan, X. Lu, Y.H. Ng, R. Amal, Surface engineered tin foil for electrocatalytic reduction of carbon dioxide to formate. Catal. Sci. Technol. 7, 2542–2550 (2017)

    CAS  Google Scholar 

  52. R. Daiyan, X. Lu, X. Tan, X. Zhu, R. Chen, S.C. Smith, R. Amal, Antipoisoning nickel–carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Appl. Energy Mater. 2, 8002–8009 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xiang, J. & Li, H. Branched heterostructures of nickel–copper phosphides as an efficient electrocatalyst for the hydrogen evolution reaction. J Mater Sci: Mater Electron 31, 11425–11433 (2020). https://doi.org/10.1007/s10854-020-03691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03691-2

Navigation