Skip to main content
Log in

The effect of ethyl cellulose coating on the surface of silicon–carbon composite as lithium anode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The silicon nanoparticles are loaded on the surface of graphite to prepare the silicon–carbon composite as lithium anode material. The first charge and discharge capacity of silicon–carbon composite is 644 and 739.6 mAh g−1, with the initial coulombic efficiency is 89.84%, and the capacity retention rate after 450 cycles is 65.23%. Moreover, the electrochemical performance of ethyl cellulose coated silicon–carbon composite has been investigated. The electrochemical kinetics performance such as charge transfer ability and lithium-ion diffusion are influenced by ethyl cellulose coating. However, the silicon nanoparticles were better bonded on the graphite carrier and less exposed on the surface after ethyl cellulose coating, which is benefit to decrease silicon nanoparticles split away from silicon–carbon composite and stabilize SEI film. Furthermore, the volume expansion is inhibited, so the cycle performance is obviously improved. The first reversible capacity of 5 wt% and 10 wt% ethyl cellulose coated silicon–carbon composite are 632.9 mAh g−1 and 593.3 mAh g−1 with capacity retention rate of 71.40% and 74.68% after 450 cycles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Lu, Z.W. Chen, F. Pan, Y. Cui, K. Amine, Electro. Energy Rev. 1, 35 (2018)

    Article  CAS  Google Scholar 

  2. Y. Jin, B. Zhu, Z.D. Lu, N.A. Liu, J. Zhu, Adv. Energy Mater. 7, 1700715 (2017)

    Article  Google Scholar 

  3. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy. Environ Sci. 4, 3243 (2011)

    CAS  Google Scholar 

  4. X.X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.J. Cheng, Nano. Energy 31, 113 (2017)

    Article  CAS  Google Scholar 

  5. J.Y. Li, Q. Xu, G. Li, Y.X. Yin, L.J. Wan, Y.G. Guo, Mater. Chem. Front. 1, 1691 (2017)

    Article  CAS  Google Scholar 

  6. Z. Zhang, N.B. Liao, H.M. Zhou, W. Xue, Acta Mater. 178, 173 (2019)

    Article  CAS  Google Scholar 

  7. T. Wang, J. Zhu, Y. Chen, H.G. Yang, Y. Qin, F. Li, Q.F. Cheng, X.Z. Yu, Z. Xu, B.G. Lu, J. Mater. Chem. A 5, 4809 (2017)

    Article  CAS  Google Scholar 

  8. H.D. Chen, X.H. Hou, F.M. Chen, S.F. Wang, B. Wu, Q. Ru, H.Q. Qin, Y.C. Xia, Carbon 130, 433 (2018)

    Article  CAS  Google Scholar 

  9. J. Zhang, J. Gu, H. He, M. Li, J. Solid, State. Electrochem. 21, 2259 (2017)

    Article  CAS  Google Scholar 

  10. F. Zhang, X. Yang, Y. Xie, N. Yi, Y. Huang, Y. Chen, Carbon 82, 161 (2015)

    Article  CAS  Google Scholar 

  11. Z.Z. Yang, B.B. Tian, Y. Li, D.Y. Fan, D.G. Yang, ACS. Appl Mater. Int. 11, 534 (2019)

    Article  Google Scholar 

  12. Y. Fu, A. Manthiram, Nano. Energy. 2, 1107 (2013)

    Article  CAS  Google Scholar 

  13. H.D. Chen, Z.L. Wang, X.H. Hou, L.J. Fu, S.F. Wang, Electrochim. Acta. 249, 113 (2017)

    Article  CAS  Google Scholar 

  14. H.D. Chen, X.H. Hou, L.N. Qu, H.Q. Qin, J Mater Sci: Mater. Electron. 28, 250 (2017)

    CAS  Google Scholar 

  15. M. Wang, X. Xiao, J. Power. Source. 326, 365 (2016)

    Article  CAS  Google Scholar 

  16. H. Erwin, S. Harald, J. Phys. Chem. C. 122, 28528 (2018)

    Article  Google Scholar 

  17. K. Kaushik, F.R. Marco-Tulio, E.T. Stephen, A.S. Ilya, Electrochim. Acta. 280, 221 (2018)

    Article  Google Scholar 

  18. B. Javier, A.S. Ilya, A.G. James, K. Matilda, J. Phys. Chem. C 121, 20640 (2017)

    Article  Google Scholar 

  19. M. Yana, Z. David, J. Nanopart. Res. 19, 372 (2017)

    Article  Google Scholar 

  20. C.T. Cao, I.A. Iwnetim, S. Eric, S. Badri, C.J. Jia, M. Brian, P.D. Thomas, Joule 3, 762 (2019)

    Article  CAS  Google Scholar 

  21. Q.T. Wang, R.R. Li, X.Z. Zhou, J. Li, Z.Q. Lei, J. Solid. State. Electrochem. 20, 1331 (2016)

    Article  CAS  Google Scholar 

  22. G.Q. Wang, B. Xu, J. Shi, X.L. Lei, C.Y. Ouyang, Appl. Surf Sci. 436, 505 (2018)

    Article  CAS  Google Scholar 

  23. Y. Zhou, H. Guo, Y. Yong, Z. Wang, X. Li, R. Zhou, Mater. Lett. 195, 164 (2017)

    Article  CAS  Google Scholar 

  24. E. Park, J. Kim, D.J. Chun, M.S. Park, H. Kim, J.H. Kim, Chem. Sus. Chem. 9, 2754 (2016)

    Article  CAS  Google Scholar 

  25. Y. Li, B. Chang, T. Li, L. Kang, S. Xu, D. Zhang, Electrochem. Commun. 72, 69 (2016)

    Article  Google Scholar 

  26. A.B. Lucas, S.W. Lee, Y. Cui, D.N. William, J. Power. Source. 273, 41 (2015)

    Article  Google Scholar 

  27. B. Javier, A.S. Ilya, A.G. James, K. Matilda, P.A. Daniel, J. Phys. Chem. C 121, 20640 (2017)

    Article  Google Scholar 

  28. G. Li, J.Y. Li, F.S. Yue, Q. Xu, T.T. Zuo, Y.X. Yin, Nano. Energy. 60, 485 (2019)

    Article  CAS  Google Scholar 

  29. G.M. Liang, X.Y. Qin, J.S. Zou, L.Y. Luo, Y.Z. Wang, Carbon 127, 424 (2018)

    Article  CAS  Google Scholar 

  30. Z. Yi, N. Lin, T.J. Xu, Y.T. Qian, Chem. Eng. J. 347, 214 (2018)

    Article  CAS  Google Scholar 

  31. N.T. Liu, J. Liu, D.Z. Jia, Y.D. Huang, Energy Storage Mater. 18, 165 (2019)

    Article  Google Scholar 

  32. A.K. Roy, M. Zhong, M.G. Schwab, A. Binder, S.S. Venkataraman, Z. Tomovic, ACS. Appl Mater. Int. 8, 7343 (2016)

    Article  CAS  Google Scholar 

  33. Y. Zhou, H.J. Guo, Z.X. Wang, X.H. Li, J. Alloy. Compd. 725, 1304 (2017)

    Article  CAS  Google Scholar 

  34. H.J. Huang, P.H. Rao, W.M. Choi, Curr. Appl. Phys. 19, 1349 (2020)

    Article  Google Scholar 

  35. W.P. Liu, H.R. Xu, H.Q. Qin, Y.L. Lv, J. Solid. State. Electrochem. 23, 3363 (2019)

    Article  CAS  Google Scholar 

  36. H.D. Chen, K.X. Shen, X.H. Hou, G.Z. Zhang, Appl. Surf. Sci. 470, 496 (2019)

    Article  CAS  Google Scholar 

  37. F. Dou, L.Y. Shi, G.R. Chen, D.S. Zhang, Electro. Energy Rev. 2, 149 (2019)

    Article  CAS  Google Scholar 

  38. W.P. Liu, H.R. Xu, H.Q. Qin, Y.L. Lv, G.S. Zhu, X.X. Lei, J. Mater. Sci. 55, 4382 (2020)

    Article  CAS  Google Scholar 

  39. L. Wang, J.S. Zhao, X.M. He, J. Electrochem. Sci. 7, 345 (2012)

    CAS  Google Scholar 

  40. X.X. Wang, H. Hao, J.L. Liu, Electrochim. Acta. 56, 4065 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Innovation-Driven Development Project (AA17204022) and the Scientific and Technological Plan of Guilin City (201607010322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Lin or Wenping Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Lin, F., Liu, W. et al. The effect of ethyl cellulose coating on the surface of silicon–carbon composite as lithium anode material. J Mater Sci: Mater Electron 31, 11238–11246 (2020). https://doi.org/10.1007/s10854-020-03672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03672-5

Navigation