Skip to main content
Log in

Microstructure and growth kinetic study in Sn–Cu transient liquid phase sintering solder paste

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The feasibility of the highly reliable and replicable microstructure formation of the transient liquid phase sintering (TLPS) paste during the early soldering and isothermal aging on the Cu substrate had been successfully investigated in this study. By using the Sn–0.7 wt% Cu (SC) solder paste as the base material and the Cu particles in the production of the TLPS Sn–10 wt% Cu (SC10) solder paste, the ensuing Cu6Sn5 phase from the isothermal aging process was found to have reduced the β-Sn area of the bulk SC10 solder microstructure. The growth kinetic for TLPS SC10 resulted in a 26.76 kJ/mol of activation energy level. The real-time synchrotron radiation imaging technique that was employed in studying the growth and formation of the primary intermetallic phases at the solder joints had also discovered the primary intermetallic in TLPS SC10 was not only found to have experienced an early nucleation just after the solder had melted, but its growth was also restricted prior to the solidification of the liquid solder. Therefore, the relevance of the results that were obtained from this research may offer a possible solution for aiding the future development of highly reliable solder joints in high temperature solder applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. K.-H. Jung, K.D. Min, C.-J. Lee, S.-B. Jung, Pressureless die attach by transient liquid phase sintering of Cu nanoparticles and Sn-58Bi particles assisted by polyvinylpyrrolidone dispersant. J. Alloys Compd. 781, 657–663 (2019). https://doi.org/10.1016/j.jallcom.2018.12.032

    Article  CAS  Google Scholar 

  2. O. Mokhtari, H. Nishikawa, Transient liquid phase bonding of Sn–Bi solder with added Cu particles. J. Mater. Sci. 27, 4232–4244 (2016). https://doi.org/10.1007/s10854-016-4287-x

    Article  CAS  Google Scholar 

  3. B.-S. Lee, J.-W. Yoon, Cu-Sn intermetallic compound joints for high-temperature power electronics applications. J. Electron. Mater. 47(1), 430–435 (2018). https://doi.org/10.1007/s11664-017-5792-2

    Article  CAS  Google Scholar 

  4. S. Sun, Q. Guo, Z. Zhang, H. Chen, M. Li, Microstructure evolution and mechanical strength evaluation in Ag/Sn/Cu TLP bonding interconnection during aging test. Microelectron. Reliab. 80, 144–148 (2018). https://doi.org/10.1016/j.microrel.2017.12.001

    Article  CAS  Google Scholar 

  5. H. Pan, J. Huang, H. Ji, M. Li, Enhancing the solid/liquid interfacial metallurgical reaction of Sn-Cu composite solder by ultrasonic-assisted chip attachment. J. Alloys Compd. 784, 603–610 (2019). https://doi.org/10.1016/j.jallcom.2019.01.090

    Article  CAS  Google Scholar 

  6. H. Feng, J. Huang, X. Peng, Z. Lv, Y. Wang, J. Yang, S. Chen, X. Zhao, A study of Ni3Sn4 growth dynamics in Ni-Sn TLPS bonding process by differential scanning calorimetry. Thermochim. Acta 663, 53–57 (2018). https://doi.org/10.1016/j.tca.2018.03.006

    Article  CAS  Google Scholar 

  7. H.Y. Zhao, J.H. Liu, Z.L. Li, Y.X. Zhao, H.W. Niu, X.G. Song, H.J. Dong, Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process. Mater. Lett. 186, 283–288 (2017). https://doi.org/10.1016/j.matlet.2016.10.017

    Article  CAS  Google Scholar 

  8. O. Mokhtari, H. Nishikawa, The shear strength of transient liquid phase bonded Sn–Bi solder joint with added Cu particles. Adv. Powder Tech. 27(3), 1000–1005 (2016). https://doi.org/10.1016/j.apt.2016.04.010

    Article  CAS  Google Scholar 

  9. X. Qiao, S.F. Corbin, Development of transient liquid phase sintered (TLPS) Sn–Bi solider pastes. Mater. Sci. Eng. A 283, 38–45 (2000). https://doi.org/10.1016/S0921-5093(00)00621-3

    Article  Google Scholar 

  10. K. Chu, Y. Sohn, C. Moon, A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scr. Mater. 109, 113–117 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.032

    Article  CAS  Google Scholar 

  11. A.A. Bajwa, J. Wilde, Reliability modeling of Sn–Ag transient liquid phase die-bonds for high-power SiC devices. Microelectron. Reliab. 60, 116–125 (2016). https://doi.org/10.1016/j.microrel.2016.02.016

    Article  CAS  Google Scholar 

  12. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, L. Liu, Novel transient liquid phase bonding through capillary action for high-temperature power devices packaging. Mater. Sci. Eng. A. (2018). https://doi.org/10.1016/j.msea.2018.03.097

    Article  Google Scholar 

  13. Z.L. Li, H.J. Dong, X.G. Song, H.Y. Zhao, H. Tian, J.H. Liu, J.C. Feng, J.C. Yan, Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process. Ultrason. Sonochem. 42, 403–410 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.005

    Article  CAS  Google Scholar 

  14. S.U. Mehreen, K. Nogita, S. McDonald, H. Yasuda, D. StJohn, Suppression of Cu3Sn in the Sn-10Cu peritectic alloy by the addition of Ni. J. Alloys Compd. 766, 1003–1013 (2018). https://doi.org/10.1016/j.jallcom.2018.06.251

    Article  CAS  Google Scholar 

  15. L. Sun, M.-H. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloys Compd. 786, 677–687 (2019). https://doi.org/10.1016/j.jallcom.2019.01.384

    Article  CAS  Google Scholar 

  16. X. Liu, S. He, H. Nishikawa, Thermally stable Cu3Sn/Cu composite joint for high-temperature power device. Scr. Mater. 110, 101–104 (2016). https://doi.org/10.1016/j.scriptamat.2015.08.011

    Article  CAS  Google Scholar 

  17. H. Yasuda, K. Morishita, N. Nakatsuka, T. Nishimura, M. Yoshiya, A. Sugiyama, K. Uesugi, A. Takeuchi, Dendrite fragmentation induced by massive-like δ–γ transformation in Fe–C alloys. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-11079-y

    Article  Google Scholar 

  18. M.A.A. Mohd Salleh, C.M. Gourlay, J.W. Xian, S.A. Belyakov, H. Yasuda, S.D. McDonald, K. Nogita, In situ imaging of microstructure formation in electronic interconnections. Sci. Rep. 7, 40010 (2017). https://doi.org/10.1038/srep40010

    Article  CAS  Google Scholar 

  19. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82, 1–32 (2014). https://doi.org/10.1016/j.mser.2014.06.001

    Article  Google Scholar 

  20. M.A.A. Mohd Salleh, M.M.A. Al-Bakri, M.H. Zan@Hazizi, F. Somidin, N.F.M. Alui, Z.A. Ahmad, Mechanical properties of Sn–0.7Cu/Si3N4 lead-free composite solder. Mater. Sci. Eng. A 556, 633–637 (2012). https://doi.org/10.1016/j.msea.2012.07.039

    Article  CAS  Google Scholar 

  21. A.K. Gain, L. Zhang, M.Z. Quadir, Thermal aging effects on microstructures and mechanical properties of an environmentally friendly eutectic tin-copper solder alloy. Mater. Des. 110, 275–283 (2016). https://doi.org/10.1016/j.matdes.2016.08.007

    Article  CAS  Google Scholar 

  22. C. Rauta, D.A. Dasgupta, D.C. Hillman, Solder Phase Coarsening, Fundamentals, Preparation, Measurement and Prediction.

  23. Y.C. Chan, A.C.K. So, J.K.L. Lai, Growth kinetic studies of Cu–Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints. Mater. Sci. Eng. B 55, 5–13 (1998). https://doi.org/10.1016/S0921-5107(98)00202-5

    Article  Google Scholar 

  24. M.S. Park, M.K. Stephenson, C. Shannon, L.A. Cáceres Díaz, K.A. Hudspeth, S.L. Gibbons, J. Muñoz-Saldaña, R. Arróyave, Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions. Act. Mater. 60(13–14), 5125–5134 (2012). https://doi.org/10.1016/j.actamat.2012.06.008

    Article  CAS  Google Scholar 

  25. Z.L. Li, L.X. Cheng, G.Y. Li, J.H. Huang, Y. Tang, Effects of joint size and isothermal aging on interfacial IMC growth in Sn-3.0Ag-0.5Cu-0.1TiO2 solder joints. J. Alloys Compd. 697, 104–113 (2017). https://doi.org/10.1016/j.jallcom.2016.12.131

    Article  CAS  Google Scholar 

  26. B.S.S.C. Rao, J. Wen, L. Shen, T.K. Lee, K.Y. Zeng, Morphology and mechanical properties of intermetallic compounds in SnAgCu solder joints. Microelectron. Eng. 87, 2416–2422 (2010). https://doi.org/10.1016/j.mee.2010.04.017

    Article  CAS  Google Scholar 

  27. Y. Tang, S.M. Luo, K.Q. Wang, G.Y. Li, Effect of Nano-TiO2 particles on growth of interfacial Cu6Sn5 and Cu3Sn layers in Sn-3.0Ag-0.5Cu-xTiO2 solder joints. J. Alloys Compd. 648, 299–309 (2016). https://doi.org/10.1016/j.jallcom.2016.05.148

    Article  CAS  Google Scholar 

  28. A.K. Gain, Y.C. Chan, Growth mechanism of intermetallic compounds and damping properties of Sn–Ag–Cu-1 wt% nano-ZrO2 composite solders. Microelectron. Reliab. 54, 945–955 (2014). https://doi.org/10.1016/j.microrel.2014.01.026

    Article  CAS  Google Scholar 

  29. C.-C. Wang, C.-Y. Wen, Lin, Solid-state interfacial reactions of Sn and Sn–Ag–Cu solders with an electroless Co(P) layer deposited on a Cu substrate. J. Alloys Compd. 662, 475–483 (2016). https://doi.org/10.1016/j.jallcom.2015.12.060

    Article  CAS  Google Scholar 

  30. M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, H. Yasuda, K. Nogita, Suppression of Cu6Sn5 in TiO2 reinforced solder joints after multiple reflow cycles. Mater. Des. 108, 418–428 (2016). https://doi.org/10.1016/j.matdes.2016.06.121

    Article  CAS  Google Scholar 

  31. M.A. Rabiatul Adawiyah, O. Saliza Azlina, Comparative study on the isothermal aging of bare Cu and ENImAg surface finish for Sn-Ag-Cu solder joints. J. Alloys Compd. 740, 958–966 (2018). https://doi.org/10.1016/j.jallcom.2018.01.054

    Article  CAS  Google Scholar 

  32. M.A.A. Mohd Salleh, S.D. McDonald, K. Nogita, Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu solders on Cu substrates. J. Mater. Process Technol. 242, 235–245 (2017). https://doi.org/10.1016/j.jmatprotec.2016.11.031

    Article  CAS  Google Scholar 

  33. T.T. Dele-Afolabi, M.A. Azmah Hanim, O.J. Ojo-Kupoluyi, R. Calin, Impact of different isothermal aging conditions on the IMC layer growth and shear strength of MWCNT-reinforced Sn–5Sb solder composites on Cu substrate. J. Alloys Compd. 808, 151714 (2019). https://doi.org/10.1016/j.jallcom.2019.151714

    Article  CAS  Google Scholar 

  34. M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, S.A. Belyakov, H. Yasuda, K. Nogita, Effect of Ni on the formation and growth of primary Cu6Sn5 intermetallics in Sn-0.7 wt%Cu solder pastes on Cu substrates during the soldering process. J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-015-4121-x

    Article  Google Scholar 

  35. P. Lü, H.P. Wang, Direct formation of peritectic phase but no primary phase appearance within Ni83.25Zr16.75 peritectic alloy during free fall. Sci. Rep 6, 22641 (2016). https://doi.org/10.1038/srep22641

    Article  CAS  Google Scholar 

  36. Z. Xuan, F. Mao, Z. Cao, T. Wang, L. Zou, In situ observation on the solidification of Sn-10Cu hyperperitectic alloy under direct current field by synchrotron microradiography. J. Alloys Compd. 721, 126–133 (2017). https://doi.org/10.1016/j.jallcom.2017.05.302

    Article  CAS  Google Scholar 

  37. W. Zhai, B. Wei, Direct nucleation and growth of peritectic phase induced by substantial undercooling condition. Mater. Lett. 108, 145–148 (2013). https://doi.org/10.1016/j.matlet.2013.06.084

    Article  CAS  Google Scholar 

  38. X. Hu, Y. Li, Y. Liu, Y. Liu, Z. Min, Microstructure and shear strength of Sn37Pb/Cu solder joints subjected to isothermal aging. Microelectron. Reliab. 54(8), 1575–1582 (2014). https://doi.org/10.1016/j.microrel.2014.04.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude to the Ministry of Higher Education Malaysia, University Malaysia Perlis and Nihon Superior Co. Ltd. for their financial support throughout the research project. The in situ synchrotron radiation experiments were performed at the Japan Synchrotron Radiation Research Institute (JASRI) at the BL20XU beamline of the SPring-8 Synchrotron, under proposal No: 2017B1519 and supported by Grant-in-Aid for Scientific Research (S) (No. 17H06155), JSPS, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. A. Mohd Salleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Said, R., Mohd Salleh, M.A.A., Saud, N. et al. Microstructure and growth kinetic study in Sn–Cu transient liquid phase sintering solder paste. J Mater Sci: Mater Electron 31, 11077–11094 (2020). https://doi.org/10.1007/s10854-020-03657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03657-4

Navigation