Skip to main content
Log in

Effect of the degree of supercooling on growth mechanism of Cu6Sn5 in pure Sn/Cu solder joint

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The growth mechanism of Cu6Sn5 intermetallic compound (IMC) at Sn/Cu interface reflowed under 250 °C, 275 °C, and 300 °C for a duration of 60 s and undergoing highly pressurized air action (HP), water cooling (WC), air cooling (AC) or furnace cooling (FC) in the aftermath has been outlined. In addition, synchrotron radiation imaging technique has been utilized to in situ observe interfacial Cu6Sn5 grains growth. It has been revealed that the morphologies of Cu6Sn5 grains under HP and AC are both scallop-like, whereas the samples processed with HP and FC bear plane structure and prismatic morphologies. These revelations indicate the secondary growth of Cu6Sn5 grains during the cooling stage as the significant determinant of the final IMC morphology. Thus, continuous growth on the rough surface (M1), spiral dislocation growth (M2), and 2D nucleation and growth (M3), have been proposed to explain the observed morphologies of interfacial Cu6Sn5 grains. M1 has been recognized as the principal mechanism responsible for IMC morphology undergoing water cooling, whereas combination of M1 and M2 decide the morphological feature of interface resulting from air cooling. Finally, all of the three mechanisms (M1, M2 and M3) account for the IMC morphology corresponding to furnace cooling. As all of these three growth mechanisms are affected by the degree of supercooling (ΔT), it is inferred that the ΔT can influence the secondary nucleation of IMC at the cooling stage. With the fact that the homogeneous nucleation occurs at larger ΔT, and the relative favorability for heterogeneous nucleation at smaller ΔT; the growth mechanisms can be mapped with the degree of undercooling. Consequently, the IMC growth mechanisms proposed and their association with ΔT, can be used to obtain an appropriate thickness and morphology of IMC to improve the reliability of solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Sun, Z. Yin, J. Mater. Sci.: Mater. Electron. 30, 18878–18884 (2019)

    CAS  Google Scholar 

  2. O.Y. Liashenko, F. Hodaj, J. Mater. Sci.: Mater. Electron. 30, 1838–1849 (2019)

    CAS  Google Scholar 

  3. Z. Zhu, H. Ma, S. Shang, H. Ma, Y. Wang, X. Li, J. Mater. Sci.: Mater. Electron. 30, 15964–15971 (2019)

    CAS  Google Scholar 

  4. K. Chen, D. Wang, H. Ling, A. Hu, M. Li, W. Zhang, L. Cao, J. Mater. Sci.: Mater. Electron. 29, 19484–19490 (2018)

    CAS  Google Scholar 

  5. H.M. Kim, K.N. Tu, Phys. Rev. B 53(23), 16027–16034 (1996)

    Article  CAS  Google Scholar 

  6. Y.G. Lee, J.G. Duh, J. Mater. Sci. 33, 5569–5572 (1998)

    Article  CAS  Google Scholar 

  7. K.H. Prakash, T. Sritharan, Acta Mater. 49, 2481–2489 (2001)

    Article  CAS  Google Scholar 

  8. Y.M. Leong, A.S.M.A. Haseeb, H. Nishikawa, O. Mokhtari, J. Mater. Sci.: Mater. Electron. 30, 11914–11922 (2019)

    CAS  Google Scholar 

  9. K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55–105 (2002)

    Article  Google Scholar 

  10. J.M. Song, J.J. Lin, C.F. Huang, H.Y. Chuang, Mater. Sci. Eng. A 466, 9–17 (2007)

    Article  CAS  Google Scholar 

  11. M. Yang, M. Li, L. Wang, Y. Fu, J. Kim, J. Electron. Mater. 40, 176–188 (2001)

    Article  CAS  Google Scholar 

  12. H.T. Lee, H.M. Chen, H.M. Jiao, T.L. Liao, Mater. Sci. Eng. A 358, 134–141 (2003)

    Article  CAS  Google Scholar 

  13. A. Kumar Gain, L. Zhang, Materialia 3, 64–73 (2018)

    Article  Google Scholar 

  14. D. Zhao, K. Zhang, N. Ma, S. Li, C. Yin, F. Huo, Materials 13, 831 (2020)

    Article  CAS  Google Scholar 

  15. T.T.D. Afolabi, M.A.A. Hanim, M. Norkhairunnisa, H.M. Yusoff, M.T. Suraya, J. Alloys Compd. 649, 368–374 (2015)

    Article  CAS  Google Scholar 

  16. X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, Mater. Sci. Eng. A 673, 167–177 (2016)

    Article  CAS  Google Scholar 

  17. Y. Tang, S.M. Luo, K.Q. Wang, G.Y. Li, J. Alloys Compd. 684, 299–309 (2016)

    Article  CAS  Google Scholar 

  18. H.L.J. Pang, K.H. Tan, X.Q. Shi, Z.P. Wang, Mater. Sci. Eng. A 307, 42–50 (2001)

    Article  Google Scholar 

  19. R. Mayappan, I. Yahya, N.A.A. Ghani, H.A. Hamid, J. Mater. Sci.: Mater. Electron. 25, 2913–2922 (2014)

    CAS  Google Scholar 

  20. M. Schafer, R.A. Fournelle, J. Liang, J. Electron. Mater. 27, 1167–1176 (1998)

    Article  Google Scholar 

  21. B.F. Guo, H.T. Ma, C.R. Jiang, Y.P. Wang, A. Kunwar, N. Zhao, M.L. Huang, J. Mater. Sci.: Mater. Electron. 28, 5398–5406 (2017)

    CAS  Google Scholar 

  22. F.C. Frank, Farad. Soc. Discuss. 5, 48–54 (1949)

    Article  Google Scholar 

  23. N.F. Mott, Nature 165, 295–297 (1950)

    Article  Google Scholar 

  24. A.R. Verma, Nature 167, 939 (1951)

    Article  CAS  Google Scholar 

  25. I.M. Dawson, Nature 167, 476 (1951)

    Article  CAS  Google Scholar 

  26. K.A. Jackson, J. Cryst. Growth 5, 13–18 (1969)

    Article  CAS  Google Scholar 

  27. D.E. Temkin, Crystallization Process (Consultants Bureau, New York, 1966), p. 15

    Book  Google Scholar 

  28. J.W. Cahn, Acta Met. 8, 554–562 (1960)

    Article  CAS  Google Scholar 

  29. P. Harman, Crystal Growth: An Introduction (North-Holland Publishing Company, Amsterdam, 1973), p. 10

    Google Scholar 

  30. B.F. Guo, A. Kunwar, C. Jiang, N. Zhao, J. Sun, J. Chen, Y. Wang, M. Huang, H. Ma, J. Mater. Sci.: Mater. Electron. 29, 589–601 (2018)

    CAS  Google Scholar 

  31. L. Qu, N. Zhao, H.J. Zhao, M.L. Huang, H.T. Ma, Scr. Mater. 72–73, 43–46 (2014)

    Article  CAS  Google Scholar 

  32. M. Yang, M. Li, C. Wang, Intermetallic 25, 86–94 (2012)

    Article  CAS  Google Scholar 

  33. Z.H. Zhang, H.J. Cao, H.F. Yang, M.Y. Li, Y.X. Yu, J. Electron. Mater. 45, 5985–5986 (2016)

    Article  CAS  Google Scholar 

  34. M. Yang, Y. Cao, S. Joo, H.T. Chen, X. Ma, M.Y. Li, J. Alloys. Compd. 582, 688–695 (2014)

    Article  CAS  Google Scholar 

  35. M.L. Huang, T. Loeher, A. Ostmann, H. Reichl, Appl. Phys. Lett. 86, 181908 (2005)

    Article  CAS  Google Scholar 

  36. A.M. Gusak, K.N. Tu, Phys. Rev. B 66(11), 115403 (2002)

    Article  CAS  Google Scholar 

  37. Z.E. Liu, Materials Science Foundation, 3rd edn. (Northwestern Polytechnical University Press, Xi’an, 2007), pp. 92–93

    Google Scholar 

  38. M. Yang, M.Y. Li, L. Wang, Y.G. Fu, J. Kim, L. Weng, Mater. Lett. 65, 1506–1509 (2011)

    Article  CAS  Google Scholar 

  39. M. Mueller, I. Panchenko, S. Wiese, K. Wolter, IEEE Trans. Compd. Pack. Manuf. Technol. 10(1), 18–29 (2020)

    CAS  Google Scholar 

  40. J.W. Xian, S.A. Belyakov, M. Ollivier, K. Nogita, H. Yasuda, C.M. Gourlay, Acta Mater. 126, 540–551 (2017)

    Article  CAS  Google Scholar 

  41. J.W. Mullin, Crystallization (Butterworth-Heinemann, Oxford, 2001), pp. 124–130

    Google Scholar 

  42. R.A. Laudise, The Growth of Single Crystals (Prentice Hall, Englewood Cliffs, 1970), pp. 349–350

    Google Scholar 

  43. J.C. Brice, J. Cryst. Growth 6, 205 (1970)

    Article  CAS  Google Scholar 

  44. P. Zou, H.J. Kang, F. Cao, Y.N. Fu, T.Q. Xiao, T.M. Wang, J. Mater. Sci: Mater. Electron. 25, 4538 (2014)

    Google Scholar 

  45. M.S. Park, S.L. Gibbons, R. Arroyave, J. Electron. Mater. 43, 2510 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51871040), Department of Education Science and Technology Research Youth Project of Jiangxi Provincial (Grant Nos. GJJ201631 and GJJ180860), Student Innovation and Entrepreneurship Training Program of Yichun University (Grant Nos. 202010417079) and BL13W1 beam line of The Shanghai Synchrotron Radiation Facility (SSRF), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingfeng Guo or Haitao Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Ma, H., Kunwar, A. et al. Effect of the degree of supercooling on growth mechanism of Cu6Sn5 in pure Sn/Cu solder joint. J Mater Sci: Mater Electron 32, 7528–7540 (2021). https://doi.org/10.1007/s10854-021-05467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05467-8

Navigation