Skip to main content

Advertisement

Log in

Reasonable design of roman cauliflower photocatalyst Cd0.8Zn0.2S, high-efficiency visible light induced hydrogen generation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Previous reports indicate that the catalyst CdxZn1−xS shows good activity and reliability in the process of photocatalytic hydrogen production. However, it is still a challenge to design a cost-effective catalyst to replace the traditional CdxZn1−xS. In this work, Roman broccoli Cd0.8Zn0.2S-2 was successfully prepared through reasonable adjustment and control of the amount of raw materials. In the photocatalytic hydrogen evolution test, the amount of hydrogen evolution of CZS-2 was 1.24, 1.34, 2.06, and 2.24 times that of CZS-1, CZS-3, CZS-4, and CZS-5, respectively. This is because Cd0.8Zn0.2S-2 has more excellent synergy inside. Theoretical and experimental studies show that, based on rational design, the optical and electrical properties of the CZS-2 structure have been substantially improved (based on UV–Visible diffusion and photoluminescence). The mechanism of the study shows that the photocatalytic hydrogen evolution activity of CZS-2 is effectively improved due to the favorable energy band of effective charge transfer inside CZS-2. In this work, Roman broccoli-like CZS-2 provides a new research direction for photocatalytic water decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Z. Zhao, G. Ge, D. Zhang, Heteroatom-doped carbonaceous photocatalysts for solar fuel production and environmental remediation. ChemCatChem 10, 62–123 (2018)

    CAS  Google Scholar 

  2. S. Zhao, Y. Zhang, Y. Wang, Y. Zhou, K. Qiu, C. Zhang, J. Fang, X. Sheng, Ionic liquid-assisted synthesis of Br-modified g-C3N4 semiconductors with high surface area and highly porous structure for photoredox water splitting. J. Power Sour. 370, 106–113 (2017)

    CAS  Google Scholar 

  3. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295 (2006)

    CAS  Google Scholar 

  4. Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang, X. Zhang, Y. Li, J. Lai, Z. Sun, Y. Yang, Y. Chao, C. Li, X. Ge, W. Yang, S. Guo, Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 1707578 (2018)

    Google Scholar 

  5. Y. Chao, P. Zhou, N. Li, J. Lai, Y. Yang, Y. Zhang, Y. Tang, W. Yang, Y. Du, D. Su, Y. Tan, Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 31, 1807226 (2018)

    Google Scholar 

  6. L. Li, H. Yu, J. Xu, S. Zhao, Z. Liu, Y. Li, Rare earth element, Sm, modified graphite phase carbon nitride heterostructure for photocatalytic hydrogen production. New J. Chem. 43, 1716–1724 (2019)

    CAS  Google Scholar 

  7. P. Zhou, J. Lai, Y. Tang, F. Lin, Y. Chao, S. Guo, Amorphous FeCoPOx nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Appl. Catal. B 238, 161 (2018)

    Google Scholar 

  8. Y. Wang, Y. Zhang, S. Zhao, Z. Huang, W. Chen, Y. Zhou, X. Lv, S. Yuan, Bio-template synthesis of Mo-doped polymer carbon nitride for photocatalytic hydrogen evolution. Appl. Catal. B 248, 44–53 (2019)

    CAS  Google Scholar 

  9. L. Li, J. Xu, J. Ma, Z. Liu, Y. Li, A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution. J. Colloid Interface Sci. 552, 17–26 (2019)

    CAS  Google Scholar 

  10. Y. Xu, Y. Ye, T. Liu, X. Wang, B. Zhang, M. Wang, H. Han, C. Li, Unraveling a single-step simultaneous two-electron transfer process from semiconductor to molecular catalyst in a CoPy/CdS hybrid system for photocatalytic H2 evolution under strong alkaline conditions. J. Am. Chem. Soc. 138, 10726 (2016)

    CAS  Google Scholar 

  11. J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017)

    CAS  Google Scholar 

  12. D.P. Kumar, H. Park, E.H. Kim, S. Hong, M. Gopannagari, D.A. Reddy, T.K. Kim, Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B 224, 230–238 (2018)

    CAS  Google Scholar 

  13. H. Zhang, P. Zhang, M. Qiu, J. Dong, Y. Zhang, X.W. Lou, Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater. 31, 1804883 (2018)

    Google Scholar 

  14. J. Ran, M. Jaroniec, S.Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30, 1704649 (2018)

    Google Scholar 

  15. S. Hua, D. Qu, L. An, W. Jiang, Y. Wen, X. Wang, Z. Sun, Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route. Appl. Catal. B 240, 253–261 (2019)

    CAS  Google Scholar 

  16. R.-B. Wei, Z.-L. Huang, G.-H. Gu, Z. Wang, L. Zeng, Y. Chen, Z.-Q. Liu, Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B 231, 101–107 (2018)

    CAS  Google Scholar 

  17. R.-B. Wei, P.-Y. Kuang, H. Cheng, Y.-B. Chen, J.-Y. Long, M.-Y. Zhang, Z.-Q. Liu, Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS sustain. Chem. Eng. 5, 4249–4257 (2017)

    CAS  Google Scholar 

  18. H. Yu, J. Xu, C. Yin, Z. Liu, Y. Li, Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@Ni4S3. J. Solid State Chem. 272, 102–112 (2019)

    CAS  Google Scholar 

  19. Y. Yang, W. Zhang, Y. Xiao, Z. Shi, X. Cao, Y. Tang, Q. Gao, CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Appl. Catal. B 242, 132–139 (2019)

    CAS  Google Scholar 

  20. H. Wang, G. Wang, Z. Liu, Z. Jin, Strategy of nitrogen defects sponge from g-C3N4 nanosheets and Ni-Bi-Se complex modification for efficient dye-sensitized photocatalytic H2 evolution. Mol. Catal. 453, 1–11 (2018)

    CAS  Google Scholar 

  21. X. Li, S. Guo, W. Li, X. Ren, J. Su, Q. Song, A.J. Sobrido, B. Wei, Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution. Nano Energy 57, 388–397 (2019)

    CAS  Google Scholar 

  22. X. Yin, X. Li, H. Liu, W. Gu, W. Zou, L. Zhu, Z. Fu, Y. Lu, Realizing selective water splitting hydrogen/oxygen evolution on ferroelectric Bi3TiNbO9 nanosheets. Nano Energy 49, 489–497 (2018)

    CAS  Google Scholar 

  23. B. Qiu, Q. Zhu, M. Xing, J. Zhang, A robust and efficient catalyst of CdxZn1−xSe motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation. Chem. Commun. 53, 897–900 (2017)

    CAS  Google Scholar 

  24. N. Kakuta, K. Park, M. Finlayson, A. Ueno, A. Bard, A. Campion, M. Fox, S. Webber, J.D. White, Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide.cntdot.cadmium sulfide without a noble metal. J. Phys. Chem. 89, 732–734 (1985)

    CAS  Google Scholar 

  25. W. Zhen, X. Ning, M. Wang, Y. Wu, G. Lu, Enhancing hydrogen generation via fabricating peroxide decomposition layer over NiSe/MnO2 -CdS catalyst. J. Catal. 367, 269–282 (2018)

    CAS  Google Scholar 

  26. Z.Y. Liu, J. Xu, Y.R. Li, H. Yu, High performance photocatalytic based on Ce doped CoWO4: controllable synthesis and enhanced photocatalytic activity. Catal. Lett. 148, 3205–3213 (2018)

    CAS  Google Scholar 

  27. Z.W. Shao, T.T. Zeng, Y.N. He, D.F. Zhang, X.P. Pu, A novel magnetically separable CoFe2O4/Cd0.9Zn0.1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation. Chem. Eng. J. 359, 485–495 (2019)

    CAS  Google Scholar 

  28. Y.K. Zhang, Z.L. Jin, H. Yuan, G.R. Wang, B.Z. Ma, Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 462, 213–225 (2018)

    CAS  Google Scholar 

  29. A.P. Wu, C.G. Tian, Y.Q. Jiao, Q. Yan, G.Y. Yang, H.G. Fu, Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl. Catal. B 203, 955–963 (2017)

    CAS  Google Scholar 

  30. L. Li, J. Wu, B. Liu, X.J. Liu, C. Li, Y.Y. Gong, Y.L. Huang, L.K. Pan, NiS sheets modified CdS/reduced graphene oxide composite for efficient visible light photocatalytic hydrogen evolution. Catal. Today 315, 110–116 (2018)

    CAS  Google Scholar 

  31. J.F. Wang, P.F. Wang, C. Wang, Y.H. Ao, In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 43, 14934–14943 (2018)

    CAS  Google Scholar 

  32. M.M. Shao, Y.F. Shao, S.H. Ding, J.W. Wang, J.C. Xu, Y.J. Qu, X.W. Zhong, X.M. Chen, W.F. Ip, N. Wang, B.M. Xu, X.Q. Shi, X.S. Wang, H. Pan, Vanadium disulfide decorated graphitic carbon nitride for super-efficient solar-driven hydrogen evolution. Appl. Catal. B. 237, 295–301 (2018)

    CAS  Google Scholar 

  33. W.H. Xue, X.Y. Hu, E.Z. Liu, J. Fan, Novel reduced graphene oxide-supported Cd0.5Zn0.5S/g-C3N4 Z-scheme heterojunction photocatalyst for enhanced hydrogen evolution. Appl. Surf. Sci. 447, 783–794 (2018)

    CAS  Google Scholar 

  34. H. Du, X. Xie, Q. Zhu, L. Lin, Y.F. Jiang, Z.K. Yang, X. Zhou, A.W. Xu, Metallic MoO2 cocatalyst significantly enhances visible-light photocatalytic hydrogen production over MoO2/Zn0.5Cd0.5S heterojunction. Nanoscale 7, 5752–5759 (2015)

    CAS  Google Scholar 

  35. J.U. Kim, Y.K. Kim, H. Yang, Reverse micelle-derived Cu-doped Zn1−xCdxS quantum dots and their core/shell structure. J. Colloid Interface Sci. 341, 59–63 (2010)

    CAS  Google Scholar 

  36. J. Zhang, J.G. Yu, M. Jaroniec, J.R. Gong, Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 12, 4584–4589 (2012)

    CAS  Google Scholar 

  37. Y.J. Yuan, D.Q. Chen, Y.W. Huang, Z.T. Yu, J.S. Zhong, T.T. Chen, W.G. Tu, Z.J. Guan, D.P. Cao, Z.G. Zou, MoS2 nanosheet-modified CuInS2 photocatalyst for visible- light-driven hydrogen production from water. Chemsuschem 9, 1003–1009 (2016)

    CAS  Google Scholar 

  38. O. Baytar, O. Sahin, H. Kilicvuran, S. Horoz, Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. J. Mater. Sci. 29, 4564–4568 (2018)

    CAS  Google Scholar 

  39. M.M. Rashad, A.A. Ismail, I. Osama, I.A. Ibrahim, A.H.T. Kandil, Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method. Arab. J. Chem. 7, 171 (2014)

    Google Scholar 

  40. D.A. Goncharova, I.N. Lapin, V. Svetlichnyi, Synthesis of CdS nanoparticles by laser ablation of metallic cadmium target in presence different precursors. Adv. Mater. Res. 1085, 182–186 (2015)

    Google Scholar 

  41. F. Xue, W. Fu, M. Liu, X. Wang, B. Wang, L. Guo, Insight into Cd0.9Zn0.1S solidsolution nanotetrapods: growth mechanism and their application for photocatalytic hydrogen production. Int. J. Hydrogen Energy 41, 20455–20464 (2016)

    CAS  Google Scholar 

  42. S.N. Guo, Y.L. Min, J.C. Fan, Q.J. Xu, Stabilizing and improving solar H2 generation from Zn0.5Cd0.5S nanorods@MoS2/RGO hybrids via dual charge transfer pathway. ACS Appl. Mater. Interfaces 8, 2928–2934 (2016)

    CAS  Google Scholar 

  43. J. Song, H. Zhao, R. Sun, X. Li, D. Sun, An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP~0.33S~1.67) and twin nanocrystal Zn0.5Cd0.5S solid solution with both homo- and hetero-junctions. Energy Environ. Sci. 10, 225–235 (2016)

    Google Scholar 

  44. C.M. Li, S.Y. Yu, H.J. Dong, C.B. Liu, H.J. Wu, H.N. Che, G. Chen, Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight. Appl. Catal. B 238, 284–293 (2018)

    CAS  Google Scholar 

  45. H.J. Dong, X.X. Zhang, J.M. Li, P.J. Zhou, S.Y. Yu, N. Song, C.B. Liu, G.B. Che, C.M. Li, Construction of morphology-controlled nonmetal 2D/3D homojunction towards enhancing photocatalytic activity and mechanism insight. Appl. Catal. B 263, 118270 (2020)

    Google Scholar 

  46. S. Yi, J. Yan, B.R. Wulan, S. Li, K. Liu, Q. Jiang, Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation. Appl. Catal. B. 200, 477–483 (2017)

    CAS  Google Scholar 

  47. C.M. Li, Y.H. Du, D.P. Wang, S.M. Yin, W.G. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 27, 1604328 (2017)

    Google Scholar 

  48. X.Q. Hao, Z.L. Jin, H. Yang, G.X. Lu, Y.P. Bi, Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl. Catal. B 210, 45–56 (2017)

    CAS  Google Scholar 

  49. F. Wang, Y.H. Su, S.X. Min, Y.N. Li, Y.G. Lei, J.H. Hou, Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light. J. Solid State Chem. 260, 23–30 (2018)

    CAS  Google Scholar 

  50. H.J. Dong, M.Y. Xiao, S.Y. Yu, H.H. Wu, Y. Wang, J.X. Sun, G. Chen, C.M. Li, Insight into the activity and stability of RhxP nano-species supported on g-C3N4 for photocatalytic H2 production. ACS Catal. 10, 458–462 (2020)

    CAS  Google Scholar 

  51. C.M. Li, S.Y. Yu, H.J. Dong, Y. Wang, H.J. Wu, X.X. Zhang, G. Chen, C.B. Liu, Mesoporous ferriferrous oxide nanoreactors modified on graphitic carbon nitride towards improvement of physical, photoelectrochemical properties and photocatalytic performance. J. Colloid Interface Sci. 531, 331–342 (2018)

    CAS  Google Scholar 

  52. X.Z. Yue, S.S. Yi, R.W. Wang, Z.T. Zhang, S.L. Qiu, Synergistic effect based NixCo1-x architected Zn0.75Cd0.25S nanocrystals: an ultrahigh and stable photocatalysts for hydrogen evolution from water splitting. Appl. Catal. B 224, 17–26 (2018)

    CAS  Google Scholar 

  53. J.S. Zhang, M.W. Zhang, C. Yang, X.C. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014)

    CAS  Google Scholar 

  54. C.M. Li, S.Y. Yu, H.N. Che, X.X. Zhang, J. Han, Y.L. Mao, Y. Wang, C.B. Liu, H.J. Dong, Fabrication of Z-scheme heterojunction by anchoring mesoporous #-Fe2O3 nanospheres on g-C3N4 for degrading tetracycline hydrochloride in water. ACS Sustain. Chem. Eng. 6, 16437–16447 (2018)

    CAS  Google Scholar 

  55. Y.G. Lei, C. Yang, J.H. Hou, F. Wang, S.X. Mina, X.H. Ma, Z.L. Jin, J. Xu, G.X. Lu, K.W. Huang, Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: unraveling the essential roles of graphene quantum dots. Appl. Catal. B. 216, 59–69 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Ningxia Province (NZ17262). This work also was financially supported by the New Catalytic Process in Clean Energy Production (ZDZX201803), the Open Project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2019-KF-36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xu, J., Li, X. et al. Reasonable design of roman cauliflower photocatalyst Cd0.8Zn0.2S, high-efficiency visible light induced hydrogen generation. J Mater Sci: Mater Electron 31, 10657–10668 (2020). https://doi.org/10.1007/s10854-020-03615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03615-0

Navigation