Skip to main content
Log in

High permittivity and low dielectric loss of (1-x) Bi0.5(Na0.48K0.52)0.5TiO3-xBaZrO3 lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, (1-x)Bi0.5(Na0.48K0.52)0.5TiO3-xBaZrO3 ceramics (aliased as (1-x)BNKT-xBZ, where x = 0.00, 0.03, 0.06, 0.09) were fabricated via solid-state reaction, and the microstructure, dielectric as well as impedance properties were researched in detail. It was found that all the samples exhibited a perovskite structure and few other secondary phase was monitored. With the increase of doped BZ, the mean grain size became lager. Compared with the pure BNT ceramic, the introduction of BZ could effectively optimize the performance of (1-x)BNKT-xBZ ceramics. The dielectric constant could reach 4624, and dielectric loss was as low as 0.0028. Using a modified Curie–Weiss law, the Curie constant, the maximum temperature (Tm), and the diffuseness’ degree were systematically investigated. The behavior of the negative temperature coefficient for this ceramic is observed by impedance spectroscopy, which is similar to that of a semiconductor. Hence, our results indicate that the ceramic can be a promising candidate for high-temperature superconductor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic New York, New York, 1971)

    Google Scholar 

  2. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    CAS  Google Scholar 

  3. C. Chen, X. Jiang, Y. Li, F. Wang, Q. Zhang, H. Luo, Growth and electrical properties of Na1/2Bi1/2TiO3-BaTiO3 lead-free single crystal with morphotropic phase boundary composition. J. Appl. Phys. 108, 124106 (2010)

    Google Scholar 

  4. H. Jaffe, Piezoelectric Ceramics. J. Am. Ceram. Soc. 41, 494–498 (1958)

    CAS  Google Scholar 

  5. Y.R. Zhang, J.F. Li, B.P. Zhang, C.E. Peng, Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. J. Appl. Phys. 103, 074109 (2008)

    Google Scholar 

  6. D.Q. Xiao, D.M. Lin, J.G. Zhu, P. Yu, Studies on new systems of BNT-based lead-free piezoelectric ceramics. J. Electroceram. 21, 34–38 (2008)

    CAS  Google Scholar 

  7. P. Peng, H. Nie, G. Wang, Z. Liu, F. Cao, X. Dong, Shock-driven depolarization behavior in BNT-based lead-free ceramics, Appl. Phys. Lett. 113 (2018) 0–4.

  8. J. Wu, Advances in lead-free piezoelectric materials (Springer, Singapore, 2018)

    Google Scholar 

  9. N. Soin, Piezoelectric Mater. Piezoelectric Mater. 2014, 1–14 (2014)

    Google Scholar 

  10. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)

    CAS  Google Scholar 

  11. Y. Zhai, X. Xie, R. Zhou, X. Li, X. Liu, S. Liu, High performance room temperature ferroelectric barium strontium titanate ceramics by spark-plasma-sintering ultrafine nanocrystals. Ceram. Int. 45, 15526–15531 (2019)

    CAS  Google Scholar 

  12. A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, I.W. Kim, Phase transition, electrical properties, and temperature-insensitive large strain in BiAlO3-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 94, 3915–3921 (2011)

    CAS  Google Scholar 

  13. Y. Pu, P. Gao, T. Wu, X. Liu, Z. Dong, Dielectric and piezoelectric properties of Bi0.5K0.5TiO3-BaNb2O6 lead-free piezoelectric ceramics. J. Electron. Mater. 44, 332–340 (2015)

    CAS  Google Scholar 

  14. A. Hussain, C.W. Ahn, A. Ullah, J.S. Lee, I.W. Kim, Dielectric, ferroelectric and field-induced strain behavior of K0.5Na0.5NbO3-modified Bi0.5(Na0.78K0.22)0.5TiO3 lead-free ceramics. Ceram. Int. 38, 4143–4149 (2012)

    CAS  Google Scholar 

  15. F. Li, X. Hou, T. Li, R. Si, C. Wang, J. Zhai, Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3–Ba(Mg1/3Nb2/3)O3 ceramics via a hot-pressing strategy, J. Mater. Chem. C. 7, 12127–12138 (2019)

    CAS  Google Scholar 

  16. H. Xi, L. Yu, H. Qian, F. Chen, M. Mao, Y. Liu, Y. Lyu, Large strain with low hysteresis in Sn-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoceramics. J. Mater. Sci. 55, 1388–1398 (2019)

    Google Scholar 

  17. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and curie temperatures of Ba(ZrxTi1-x)O3 (0 ≤ x ≤ 0.12) ceramics. Scr. Mater. 61, 68–71 (2009)

    CAS  Google Scholar 

  18. R. López-Juárez, F. González-García, M.E. Villafuerte-Castrejón, Effects of CuO doping on the piezoelectric properties of KNLNS–BZ ceramics. J. Mater. Sci. Mater. Electron. 27, 7369–7373 (2016)

    Google Scholar 

  19. M. Cernea, L. Trupina, B.S. Vasile, R. Trusca, C. Chirila, Nanotubes of piezoelectric BNT-BT0.08 obtained from sol-gel precursor, J. Nanoparticle Res. 15 (2013) 0–7.

  20. K.N. Pham, A. Hussain, C.W. Ahn, W. Kim, S.J. Jeong, J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64, 2219–2222 (2010)

    CAS  Google Scholar 

  21. A. Ullah, R.A. Malik, A. Ullah, D.S. Lee, S.J. Jeong, J.S. Lee, I.W. Kim, C.W. Ahn, Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT-BST ceramics. J. Eur. Ceram. Soc. 34, 29–35 (2014)

    CAS  Google Scholar 

  22. M. Abate, V. Salini, I. Andia, How obesity affects tendons? Adv. Exp. Med. Biol. 920, 167–177 (2016)

    CAS  Google Scholar 

  23. C. Cui, Y. Pu, Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method. J. Alloys Compd. 747, 495–504 (2018)

    CAS  Google Scholar 

  24. X. Chou, J. Zhai, X. Yao, Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications. Mater. Chem. Phys. 109, 125–130 (2008)

    CAS  Google Scholar 

  25. W. Wu, D. Xiao, J. Wu, J. Li, J. Zhu, B. Zhang, Microstructure and electrical properties of relaxor (1–x)[(K0.5Na0.5)0.95Li0.05](Nb0.95Sb0.05)O3-xBaTiO3 piezoelectric ceramics. Ceram. Int. 38, 2277–2282 (2012)

    CAS  Google Scholar 

  26. Y. Liu, Y. Du, C. Cheng, X. Sun, N. Jiang, J. Wang, X. Sun, Dielectric and impedance spectroscopy analysis of lead-free (1–x)(K0.44Na0.52Li0.04) (Nb0.86Ta0.10Sb0.04)O3 -xBaTiO3 ceramics. Ceram. Int. 45, 13347–13353 (2019)

    CAS  Google Scholar 

  27. M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)

    CAS  Google Scholar 

  28. S.M. An, S.J.L. Kang, Boundary structural transition and grain growth behavior in BaTiO3 with Nd2O3 doping and oxygen partial pressure change. Acta Mater. 59, 1964–1973 (2011)

    CAS  Google Scholar 

  29. J. Zhang, Z. Pan, F.F. Guo, W.C. Liu, H. Ning, Y.B. Chen, M.H. Lu, B. Yang, J. Chen, S.T. Zhang, X. Xing, J. Rödel, W. Cao, Y.F. Chen, Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat. Commun. 6, 1–10 (2015)

    Google Scholar 

  30. J. Han, J. Yin, J. Wu, BNT-based ferroelectric ceramics: electrical properties modification by Ta2O5 oxide addition. J. Am. Ceram. Soc. 103, 412–422 (2019)

    Google Scholar 

  31. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, J. Rödel, Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3–0. 06BaTiO3, Appl. Phys. Lett. 102 (2013) 0–4.

  32. B. Wylie-VanEerd, D. Damjanovic, N. Klein, N. Setter, J. Trodahl, Structural complexity of ( Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 1–7 (2010)

    Google Scholar 

  33. T. Takenaka, H. Nagata, Y. Hiruma, Current developments and prospective of lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 47, 3787–3801 (2008)

    CAS  Google Scholar 

  34. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, P. Fu, Large strain response and fatigue-resistant behavior in lead-free Bi0.5(Na0.80K0.20)0.5TiO3-(K0.5Na0.5)MO3 (M = Sb, Ta) ceramics. RSC Adv. 5, 82605–82616 (2015)

    CAS  Google Scholar 

  35. X. Huo, S. Zhang, G. Liu, R. Zhang, J. Luo, R. Sahul, W. Cao, T.R. Shrout, Complete set of elastic, dielectric, and piezoelectric constants of [011]C poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3:Mn single crystals, J. Appl. Phys. 113 (2013) 0–5.

  36. X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Dielectric properties of Mn-doped (Na0.8K0.2)0.5Bi0.5TiO3 ceramics. Mater. Lett. 60, 1786–1790 (2006)

    CAS  Google Scholar 

  37. J. Kreisel, A.M. Glazer, P. Bouvier, G. Lucazeau, High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite. Phys. Rev. B 63, 1741061–17410610 (2001)

    Google Scholar 

  38. W. Bai, D. Chen, Y. Huang, P. Zheng, J. Zhong, M. Ding, Y. Yuan, B. Shen, J. Zhai, Z. Ji, Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics. Ceram. Int. 42, 7669–7680 (2016)

    CAS  Google Scholar 

  39. A. Singh, R. Chatterjee, 0.40% bipolar strain in lead free BNTKNN system modified with Li, Ta and Sb. J. Am. Ceram. Soc. 96, 509–512 (2013)

    CAS  Google Scholar 

  40. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol BaTiO3. J. Appl. Phys. 110, 074106 (2011)

    Google Scholar 

  41. Y. Liu, Y. Du, X. Sun, X. Lv, K. Yang, M. Du, Y. Feng, N. Jiang, Relation of the phase transition and electrical, photoluminescence properties in (1–x) Na0.5K0.5NbO3–xLiSbO3:0.006Dy3+ lead free ceramics. J. Mater. Sci. Mater. Electron. 30, 10507–10515 (2019)

    CAS  Google Scholar 

  42. S. Praharaj, D. Rout, V. Subramanian, S.J.L. Kang, Study of relaxor behavior in a lead-free (Na0.5Bi0.5)TiO3-SrTiO3-BaTiO3 ternary solid solution system. Ceram. Int. 42, 12663–12671 (2016)

    CAS  Google Scholar 

  43. P. Ren, J. He, L. Sun, T. Frömling, Y. Wan, S. Yang, X. Cao, B. Wang, J. Yang, G. Zhao, High-temperature dielectrics based on (1-y)[(1–x)Bi0.5Na0.5TiO3-xBiAlO3]-yCaZrO3 ternary system with stable permittivity and low dielectric loss in a wide temperature range. J. Eur. Ceram. Soc. 39, 4160–4167 (2019)

    CAS  Google Scholar 

  44. Z. Song, S. Zhang, H. Liu, H. Hao, M. Cao, Q. Li, Q. Wang, Z. Yao, Z. Wang, M.T. Lanagan, Improved energy storage properties accompanied by enhanced interface polarization in annealed microwave-sintered BST. J. Am. Ceram. Soc. 98, 3212–3222 (2015)

    CAS  Google Scholar 

  45. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused- phase-trans ition crystals. Ferroelectrics 44, 55–61 (1982)

    CAS  Google Scholar 

  46. Y. Huang, F. Li, H. Hao, F. Xia, H. Liu, S. Zhang, (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J. Mater. 5, 385–393 (2019)

    Google Scholar 

  47. T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, Frequency and temperature dependence dielectric study of strontium modified barium zirconium titanate ceramics obtained by mechanochemical synthesis. J. Mater. Sci. Mater. Electron. 26, 3069–3082 (2015)

    CAS  Google Scholar 

  48. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94, 4382–4386 (2011)

    CAS  Google Scholar 

  49. P. Thangadurai, V. Sabarinathan, A.C. Bose, S. Ramasamy, Conductivity behaviour of a cubic/tetragonal phase stabilized nanocrystalline La2O3–ZrO2. J. Phys. Chem. Solids 65, 1905–1912 (2004)

    CAS  Google Scholar 

  50. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)

    CAS  Google Scholar 

  51. M.J. Miah, M.N.I. Khan, A.K.M. Akther Hossain, Synthesis and enhancement of multiferroic properties of (x)Ba0.95Sr0.05TiO3-(1–x)BiFe0.90Dy0.10O3 ceramics. J. Magn. Magn. Mater. 397, 39–50 (2016)

    CAS  Google Scholar 

  52. A. Ullah, C.W. Ahn, R.A. Malik, I.W. Kim, Dielectric and impedance spectroscopy of lead-free 0.99[(Bi0.5Na0.4K0.1)(Ti0.980Nb0.020)O3]-0.01(Ba0.7Sr0.3)TiO3 ceramics. Phys. B 444, 27–33 (2014)

    CAS  Google Scholar 

  53. K. Hayat, M. Nadeem, M. Javid Iqbal, M.A. Rafiq, M.M. Hasan, Analysis of electro-active regions and conductivity of BaMnO3 ceramic by impedance spectroscopy. Appl. Phys. A 115, 1281–1289 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Science and Technology Development Plan Project of Shandong Province, China (Grant No. 2013GSF11714).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Du or Zhongfu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Du, Y., Li, Z. et al. High permittivity and low dielectric loss of (1-x) Bi0.5(Na0.48K0.52)0.5TiO3-xBaZrO3 lead-free ceramics. J Mater Sci: Mater Electron 31, 10038–10046 (2020). https://doi.org/10.1007/s10854-020-03548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03548-8

Navigation