Skip to main content

Advertisement

Log in

Enhanced dielectric temperature stability and energy-storage properties of (Y0.5Nb0.5)4+ co-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free relaxor ceramics

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(Bi0.5Na0.5)0.94Ba0.06Ti1−x(Y0.5Nb0.5)xO3 (abbreviated as BNTBT-100xYN) lead-free relaxor ceramics were designed and prepared using a traditional solid-state sintering technique. The influences of the introduction of (Y0.5Nb0.5)4+ complex ions for the dielectric properties and energy storage performances of BNTBT-100xYN ceramics were systematically studied. All samples exhibited a typical pseudo-cubic symmetry structure and obtained the dense microstructure with the uniform distribution of all elements. The ergodic relaxor behavior of all ceramics was observed and revealed a trend of increase as a function of composition. It accelerated the improvement of the temperature stability of the dielectric constant. All samples showed a single grain conduction mechanism and the activation energy decreased with the addition of composition. It is related to the generation of oxygen vacancies induced by the defect dipoles. BNTBT-6YN ceramic revealed excellent dielectric temperature stability within the temperature range from 87 to 479 °C and the loss tangent less than 0.05 between 25 °C and 474 °C. Besides, a high recoverable energy density of ~ 0.91 J/cm3 with the corresponding efficiency of ~ 78.5% at applied 115 kV/cm field was achieved for BNTBT-5YN ceramic. Hence, BNTBT-5YN and BNTBT-6YN ceramics will become one of the outstanding dielectric ceramics for the electronic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ren P, He J, Sun L, Frömling T, Wan Y, Yang S, Cao X, Wang B, Yang J, Zhao G (2019) High-temperature dielectrics based on (1-y)[(1–x)Bi0.5Na0.5TiO3-xBiAlO3]-yCaZrO3 ternary system with stable permittivity and low dielectric loss in a wide temperature range. J Eur Ceram Soc 39:4160–4167

    CAS  Google Scholar 

  2. Shih Y-T, Jean J-H, Lin S-C (2010) Failure mechanism of a low-temperature-cofired ceramic capacitor with an inner Ag electrode. J Am Ceram Soc 93:3278–3283

    CAS  Google Scholar 

  3. Yonezawa T, Takeoka S, Kishi H, Ida K, Tomonari M (2008) The preparation of copper fine particle paste and its application as the inner electrode material of a multilayered ceramic capacitor. Nanotechnol 19:145706. https://doi.org/10.1088/0957-4484/19/14/145706

    Article  CAS  Google Scholar 

  4. Ren P, He J, Yan F, Wang X (2019) Temperature-stable dielectric and energy storage properties of (1–x)(0.94Bi0.5Na0.5TiO3–0.09BiAlO3)-xSrTiO3 ceramics. J Alloys Compd 807:151676. https://doi.org/10.1016/j.jallcom.2019.151676

    Article  CAS  Google Scholar 

  5. Benyoussef M, Zannen M, Belhadi J, Manoun B, Dellis J-L, El Marssi M, Lahmar A (2018) Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics. Ceram Int 44:19451–19460

    CAS  Google Scholar 

  6. Kim C-H, Park K-J, Yoon Y-J, Hong M-H, Hong J-O, Hur K-H (2008) Role of yttrium and magnesium in the formation of core-shell structure of BaTiO3 grains in MLCC. J Eur Ceram Soc 28:1213–1219

    CAS  Google Scholar 

  7. Sui J, Fan H, Peng H, Ma J, Yadav AK, Chao W, Zhang M, Dong G (2019) Enhanced energy-storage performance and temperature-stable dielectric properties of (1–x)[(Na0.5Bi0.5)0.95Ba0.05]0.98La0.02TiO3-xK0.5Na0.5NbO3 lead-free ceramics. Ceram Int 45:20427–20434

    CAS  Google Scholar 

  8. Wang X, Fan H, Ren P, Liu K (2019) High-temperature dielectrics based on 0.95(0.94Bi0.5Na0.5TiO3-0.06BiAlO3)-0.05K0.5Na0.5NbO3. Ceram Int 45:12360–12365

    CAS  Google Scholar 

  9. Yadav AK, Fan H, Yan B, Wang C, Ma J, Zhang M, Du Z, Wang W, Dong W, Wang S (2020) High strain and high energy density of lead-free (Bi0.50Na0.40K0.10)0.94Ba0.06Ti1−x(Al0.50Ta0.50)xO3 perovskite ceramics. J Mater Sci 55:11137–11150

    CAS  Google Scholar 

  10. Zhang S-T, Kounga AB, Aulbach E, Deng Y (2008) Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J Am Ceram Soc 91:3950–3954

    CAS  Google Scholar 

  11. Dittmer R, Jo W, Rödel J, Kalinin S, Balke N (2012) Nanoscale insight into lead-free BNT-BT-xKNN. Adv Funct Mater 22:4208–4215

    CAS  Google Scholar 

  12. Maqbool A, Hussain A, Rahman JU, Malik RA, Song TK, Kim M-H, Kim W-J (2016) Composition-dependent structural, dielectric and ferroelectric responses of lead-free Bi0.5Na0.5TiO3-SrZrO3 ceramics. J Korean Phys Soc 68:1430–1438

    Google Scholar 

  13. He Q, Ruzhong Z (2020) Giant electrostrictive strain in (Bi0.5Na0.5)TiO3-NaNbO3 lead-free relaxor antiferroelectrics ferturing temperature and frequency stability. J Mater Chem A 8:2369–2375

    Google Scholar 

  14. Li Q, Li M, Wang C, Zhang M, Fan H (2019) Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Ceram Int 45:19822–19828

    CAS  Google Scholar 

  15. Jia W, Hou Y, Zheng M, Zhu M (2017) High-temperature dielectrics based on (1–x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xNaNbO3 system. J Alloys Compd 724:306–315

    CAS  Google Scholar 

  16. Liu Y, Li Y, Zheng Z, Kang W, Xi K, Mi Y (2020) Dielectric temperature stability of Nb-modified Bi0.5(Na0.78K0.22)0.5TiO3 lead-free ceramics. Ceram Int 47:4933–4936

    Google Scholar 

  17. Zhao Y, Xu J, Yang L, Zhou C, Lu X, Yuan C, Li Q, Chen G, Wang H (2016) High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex ion. J Alloys Compd 666:209–216

    CAS  Google Scholar 

  18. Yan B, Fan H, Wang C, Zhang M, Yadav AK, Zheng X, Wang H, Du Z (2019) Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram Int 46:281–288

    Google Scholar 

  19. Wang H, Li Q, Jia Y, Yadav AK, Yan B, Li M, Feng Q, Wang W, Fan H (2021) Large electro-strain with excellent fatigue resistance of lead-free (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Y0.5Nb0.5)xO3 perovskite ceramics. Ceram Int 47:17092–17098

  20. Hu B, Fan H, Ning L, Gao S, Yao Z, Li Q (2018) Enhanced energy-storage performance and dielectric temperature stability of (1–x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram Int 44:10968–10974

    CAS  Google Scholar 

  21. Wang C, Li Q, Yadav AK, Peng H, Fan H (2019) Bi0.48(Na0.84K0.16)0.48Sr0.04(Ti1-xTax)O3 lead-free ceramics with enhanced electric field-induced strain. J Alloys Compd 803:1082–1089

    CAS  Google Scholar 

  22. Yan B, Fan H, Yadav AK, Wang C, Du Z, Li M, Wang W, Dong W, Wang S (2020) [(Bi0.50Na0.40K0.10)0.94Ba0.06]1-xLaxTi0.975Ta0.025O3 lead-free relaxor ceramics with high energy storage density and thermally stable dielectric properties. J Mater Sci 55:14728–14739. https://doi.org/10.1007/s10853-020-05070-y

    CAS  Google Scholar 

  23. Li Q, Wang C, Zhang W, Fan H (2018) Influence of compositional ratio K/Na on structure and piezoelectric properties in [(Na1−xKx)0.5Bi0.5]Ti0.985Ta0.015O3 ceramics. J Mater Sci 54:4523–4531

    Google Scholar 

  24. Wang C, Li Q, Zhang W, Yan B, Yadav AK, Peng H, Fan H (2019) [Bi0.5(Na0.4-xLixK0.1)]0.96Sr0.04Ti0.975Ta0.025O3 lead-free RELAXOR ceramics with the enhanced recoverable energy density. Ceram Int 46:715–721

    CAS  Google Scholar 

  25. Wang C, Li Q, Zhang W, Fan H (2019) Large electric field-induced strain in the novel BNKTAN-BNBLTZ lead-free ceramics. J Mater Sci Technol 45:15–22. https://doi.org/10.1016/j.jmst.2019.09.040

    Google Scholar 

  26. Dong G, Fan H, Shi J, Li Q (2018) Large strain response with low driving field in Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–Bi(Mg2/3Nb1/3)O3 ceramics. J Am Ceram Soc 101:3947–3955

    CAS  Google Scholar 

  27. Han J, Yin J, Wu J (2020) BNT-based ferroelectric ceramics: electrical properties modification by Ta2O5 oxide addition. J Am Ceram Soc 103:412–422

    CAS  Google Scholar 

  28. Zhao N, Fan H, Ning L, Ma J, Zhou Y (2018) Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics. J Am Ceram Soc 101:5578–5585

    CAS  Google Scholar 

  29. Chen W, Zhao X, Sun J, Zhang L, Zhong L (2016) Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J Alloys Compd 670:48–54

    CAS  Google Scholar 

  30. Pan Z, Hu D, Zhang Y, Liu J, Shen B, Zhai J (2019) Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem C 7:4072–4078

    CAS  Google Scholar 

  31. Xu Q, Lanagan MT, Huang X, Xie J, Zhang L, Hao H, Liu H (2016) Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage. Ceram Int 42:9728–9736

    CAS  Google Scholar 

  32. Yan F, Yang H, Lin Y, Wang T (2017) Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg Chem 56:13510–13516

    CAS  Google Scholar 

  33. Ren P, He J, Wang X, Wan Z, Liu Z, Duan Z, Fan H, Zhao G (2018) Enhanced temperature-stability in tunable dielectric properties of (1–x) (K0.49Na0.49Li0.02)(Nb0.8Ta0.2)O3-xCaZrO3 ceramics. Ceram Int 44:8133–8137

    CAS  Google Scholar 

  34. Acosta M, Zang J, Jo W, Rödel J (2012) High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J Eur Ceram Soc 32:4327–4334

    CAS  Google Scholar 

  35. Yao G, Wang X, Zhang Y, Shen Z, Li L, Alford N (2012) Nb-Modified 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 ceramics for X9R high-temperature dielectrics application prepared by coating method. J Am Ceram Soc 95:3525–3531

    CAS  Google Scholar 

  36. Xiang P-H, Takeda H, Shiosaki T (2008) Characterization of manganese-doped BaTiO3–(Bi1/2Na1/2)TiO3 positive temperature coefficient of resistivity ceramics using impedance spectroscopy. J Appl Phys 103:064102. https://doi.org/10.1063/1.2884714

    Article  CAS  Google Scholar 

  37. Höfling M, Steiner S, Hoang A-P, Seo I-T, Frömling T (2018) Optimizing the defect chemistry of Na1/2Bi1/2TiO3-based materials: paving the way for excellent high temperature capacitors. J Mater Chem C 6:4769–4776

    Google Scholar 

  38. Sui J, Fan H, Hu B, Ning L (2018) High temperature stable dielectric properties and enhanced energy-storage performance of (1–x)(0.85Na0.5Bi0.5TiO3 −0.15Ba0.8Ca0.2Ti0.8Zr0.2O3)− xK0.5Na0.5NbO3 lead-free ceramics. Ceram Int 44:18054–18059

    CAS  Google Scholar 

  39. Bai W, Chen D, Huang Y, Zheng P, Zhong J, Ding M, Yuan Y, Shen B, Zhai J, Ji Z (2016) Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics. Ceram Int 42:7669–7680

    CAS  Google Scholar 

  40. Hao J, Xu Z, Chu R, Li W, Fu P, Du J, Li G (2016) Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics. J Eur Ceram Soc 36:4003–4014

    CAS  Google Scholar 

  41. Ren P, Liu Z, Liu H, Sun S, Wan Y, Long C, Shi J, Chen J, Zhao G (2018) Large electrostrain and structural evolution in (1–x)[0.94Bi0.5Na0.5TiO3-0.06BaTiO3]-xAgNbO3 ceramics. J Eur Ceram Soc 39:994–1001

    Google Scholar 

  42. Zhang L, Pu YP, Chen M, Wei TC, Peng X (2020) Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J 383:123154

    CAS  Google Scholar 

  43. Li Q, Ning L, Hu B, Peng H, Zhao N, Fan H (2018) Large strain response in (1–x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xSr0.8Bi0.1□0.1Ti0.8Zr0.2O2.95 lead-free piezoelectric ceramics. Ceram Int 45:1676–1682

    Google Scholar 

  44. Zhang L, Pu YP, Chen M, Wei TC, Keipper W, Shi PK, Guo X, Li R, Peng X (2020) High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J Eur Ceram Soc 40:71–77

    CAS  Google Scholar 

  45. Ma C, Tan X, Kleebe HJ (2011) In situ transmission electron microscopy study on the phase transitionsin lead-free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Am Ceram Soc 94:4040–4044

    CAS  Google Scholar 

  46. Hao J, Shen B, Zhai J, Liu C, Li X, Gao X (2013) Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. J Appl Phys 113:114106

    Google Scholar 

  47. Hoang AP, Steiner S, Yang F, Li LH, Sinclair DC, Fromling T (2021) Reducing dielectric loss in Na0.5Bi0.5TiO3 based high temperature capacitor material. J Eur Ceram Soc 41:2587–2595

    CAS  Google Scholar 

  48. Li M, Li Q, Yan B, Yadav AK, Wang H, Dong G, Fan H (2020) Large strain with enhanced energy-storage and temperature stable dielectric properties in Bi0.38Na0.38Sr0.24Ti1-x(Mn1/3Nb2/3)xO3 ceramics. Ceram Int 47:1325–1332

    Google Scholar 

  49. Li Q, Wang C, Yadav AK, Fan H (2019) Large electrostrictive effect and energy storage density in MnCO3 modified Na0.325Bi0.395Sr0.245□0.035TiO3 lead-free ceramics. Ceram Int 46:3374–3381

    Google Scholar 

  50. Li T, Liu X, Shi S, Yin Y, Li H, Wang Q, Zhang Y, Bian J, Rajput S, Long C, Peng B, Bai Y, Wang Y, Lou X (2017) Large electrocaloric efficiency over a broad temperature span in lead-free BaTiO3-based ceramics near room temperature. Appl Phys Lett 111:202902. https://doi.org/10.1063/1.5001366

    Article  CAS  Google Scholar 

  51. Yadav AK, Anita S, Kumar A, Panchwanee VR, Reddy PM, Shirage S, Biring SS (2017) Structural and ferroelectric properties of perovskite Pb(1–x)(K0.5Sm0.5)xTiO3 ceramics. RSC Adv 7:39434–39442

    CAS  Google Scholar 

  52. Long C, Ren W, Li Y, Liu L, Xia Y, Fan H (2019) High oxide ion conductivity in layer-structured Bi4Ti3O12-based ferroelectric ceramics. J Mater Chem C 7:8825–8835

    CAS  Google Scholar 

  53. Zhang L, Pu YP, Chen M (2020) Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications. Ceram Int 46:98–105

    Google Scholar 

  54. Zhao N, Fan H, Ren X, Ma J, Bao J, Guo Y, Zhou Y (2019) Dielectric, impedance and piezoelectric properties of (K0.5Nd0.5)TiO3-doped 0.67BiFeO3-0.33BaTiO3 ceramics. J Eur Ceram Soc 39:4096–4102

    CAS  Google Scholar 

  55. Li Q, Gao S, Ning L, Fan H, Liu Z, Li Z (2017) Giant field-induced strain in Nb2O5-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Ceram Int 43:5367–5373

    CAS  Google Scholar 

  56. Li Q, Yao Z, Ning L, Gao S, Hu B, Dong G, Fan H (2018) Enhanced energy-storage properties of (1–x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 lead-free ceramics. Ceram Int 44:2782–2788

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project (2020YFC1521904), the National Nature Science Foundation (51902258 and 51902259), the SKLSP Project (2019-TZ-04), and the 111 Program (B08040) of MOE of China. We would also like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Li or Arun Kumar Yadav.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Q., Jia, Y. et al. Enhanced dielectric temperature stability and energy-storage properties of (Y0.5Nb0.5)4+ co-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free relaxor ceramics. J Mater Sci 56, 14672–14683 (2021). https://doi.org/10.1007/s10853-021-06193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06193-6

Navigation