Skip to main content
Log in

Effect of annealing temperature on physical and electrical properties of solution-processed polycrystalline In2Ga2ZnO7 thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Influence of annealing temperature on the properties of In2Ga2ZnO7 (IGZO) thin film prepared using sol–gel method was extensively studied. Annealing treatment at four different temperatures (300, 500, 700 and 900 °C) has transformed the amorphous IGZO to polycrystalline IGZO. The increase in annealing temperature to 900 °C encouraged the formation of interfacial layer on the underlying Si substrate. As a result, a decrement in film current conductivity was perceived and the sample annealed at 900 °C was determined as the closest to having insulating properties. More characterization regarding the structural, morphological and optical characteristics of the annealed films was discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Chen, W. Cranton, M. Fihn, Handbook of Visual Display Technology (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-14346-0

    Book  Google Scholar 

  2. W. Fuhs, in Amorphous Hydrogenated Silicon, a-Si:H. Silicon (Springer, Berlin, 2004), pp. 123–137. https://doi.org/10.1007/978-3-662-09897-47.

  3. M.R. Hasin, Post Processing Treatment of InGaZnO Thin Film Transistors for Improved Bias-Illumination Stress Reliability (Arizona State University, Tempe, 2014). https://doi.org/10.1007/s13398-014-0173-7.2

    Book  Google Scholar 

  4. Y. Kuo, Thin film transistor technology-past, present, and future. Electrochem. Soc. Interface. 22, 55–61 (2013). https://doi.org/10.1149/2.F06131if

    Article  CAS  Google Scholar 

  5. L. Zhang, W. Xiao, W. Wu, B. Liu, Research progress on flexible oxide-based thin film transistors. Appl. Sci. 9, 773 (2019). https://doi.org/10.3390/app9040773

    Article  CAS  Google Scholar 

  6. G. Huang, L. Duan, G. Dong, D. Zhang, Y. Qiu, High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode. ACS Appl. Mater. Interfaces. 6, 20786–20794 (2014). https://doi.org/10.1021/am5050295

    Article  CAS  Google Scholar 

  7. L. Zhu, G. He, J. Lv, E. Fortunato, R. Martins, Fully solution-induced high performance indium oxide thin film transistors with ZrO: x high-k gate dielectrics. RSC Adv. 8, 16788–16799 (2018). https://doi.org/10.1039/c8ra02108b

    Article  CAS  Google Scholar 

  8. W.S. Shih, S.J. Young, L.W. Ji, W. Water, H.W. Shiu, TiO2-based thin film transistors with amorphous and anatase channel layer. J. Electrochem. Soc. 158, H609 (2011). https://doi.org/10.1149/1.3561271

    Article  CAS  Google Scholar 

  9. S.A. Khan, Amorphous metal-oxide based thin film transistors on metal foils: materials, devices and circuits integration, 2012. https://preserve.lehigh.edu/etd/1106. Accessed 24 Dec 2019.

  10. Fundamental properties of IGZO, in Phys. Technol. Cryst. Oxide Semicond. CAAC-IGZO (Wiley, Chichester, 2016), pp. 153–215. https://doi.org/10.1002/9781119247289.ch3.

  11. M. Moreira, E. Carlos, C. Dias, J. Deuermeier, M. Pereira, P. Barquinha, R. Branquinho, R. Martins, E. Fortunato, Tailoring IGZO composition for enhanced fully solution-based thin film transistors. Nanomaterials. 9, 1273 (2019). https://doi.org/10.3390/nano9091273

    Article  CAS  Google Scholar 

  12. M. Tsubuku, D. Matsubayashi, T. Takeuchi, R. Honda, T. Murakawa, S. Matsuda, Y. Yamamoto, S. Yamazaki, in Analysis for Extremely Low Off-State Current in CAAC-IGZO FETs. ECS Trans. 2015, pp. 17–22. https://doi.org/10.1149/06701.0017ecst.

  13. C.-Y. Chung, High Mobility of Sputtered In2Ga2ZnO7 (IGZO) Thin Film Transistors (TFTs) Cornell University (2016) https://doi.org/10.7298/X4DR2SD7

  14. Y. Shin, S.T. Kim, K. Kim, M.Y. Kim, S. Oh, J.K. Jeong, The mobility enhancement of indium gallium zinc oxide transistors via low-temperature crystallization using a tantalum catalytic layer. Sci. Rep. 7, 1–10 (2017). https://doi.org/10.1038/s41598-017-11461-0

    Article  CAS  Google Scholar 

  15. G.H. Kim, H.S. Shin, B. Du Ahn, K.H. Kim, W.J. Park, H.J. Kim, Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor. J. Electrochem. Soc. 156, H7 (2009). https://doi.org/10.1149/1.2976027

    Article  CAS  Google Scholar 

  16. X. Zhou, Y. Shao, L. Zhang, H. Lu, H. He, D. Han, Y. Wang, S. Zhang, Oxygen interstitial creation in a-IGZO thin-film transistors under positive gate-bias stress. IEEE Electron. Device Lett. 38, 1252–1255 (2017). https://doi.org/10.1109/LED.2017.2723162

    Article  CAS  Google Scholar 

  17. T. Sawabe, M. Akiyoshi, K. Yoshida, T. Yano, Estimation of neutron-irradiation-induced defect in 3C-SiC from change in XRD peak shift and DFT study. J. Nucl. Mater. 417, 430–434 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.180

    Article  CAS  Google Scholar 

  18. Kolesnikov N, Borisenko E. Modern Aspects of Bulk Crystal and Thin Film Preparation, 2012

  19. R. Chen, Fabrication and Characterization of Compound Thin-Film Transistors (The Hong Kong University of Science and Technology, Hong Kong, 2013)

    Book  Google Scholar 

  20. Y. Tanaka, K. Wada, Y. Kobayashi, T. Fujii, S.J. Denholme, R. Sekine, N. Kase, N. Kimizuka, N. Miyakawa, Single crystal growth of bulk InGaZnO4 and analysis of its intrinsic transport properties. CrystEngComm 21, 2985–2993 (2019). https://doi.org/10.1039/c9ce00007k

    Article  CAS  Google Scholar 

  21. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction. J. Appl. Crystallogr. 38, 1–29 (2005). https://doi.org/10.1107/S0021889804029516

    Article  CAS  Google Scholar 

  22. G. Madras, B.J. McCoy, Temperature effects during Ostwald ripening. J. Chem. Phys. 119, 1683–1693 (2003). https://doi.org/10.1063/1.1578617

    Article  CAS  Google Scholar 

  23. X. Xue, R.L. Penn, E.R. Leite, F. Huang, Z. Lin, Crystal growth by oriented attachment: kinetic models and control factors. CrystEngComm 16, 1419–1429 (2014). https://doi.org/10.1039/c3ce42129e

    Article  CAS  Google Scholar 

  24. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit, T.O. Mason, Transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment. Materials 3, 4892–4914 (2010). https://doi.org/10.3390/ma3114892

    Article  CAS  Google Scholar 

  25. J. Sengupta, R.K. Sahoo, C.D. Mukherjee, Effect of annealing on the structural, topographical and optical properties of sol-gel derived ZnO and AZO thin films. Mater. Lett. 83, 84–87 (2012). https://doi.org/10.1016/j.matlet.2012.05.130

    Article  CAS  Google Scholar 

  26. G. Prakash, J.L. Gray, Y.S. Lee, J. Kanicki, Comparison of composition and atomic structure of amorphous indium gallium zinc oxide thin film transistor before and after positive bias temperature stress by transmission electron microscopy. Semicond. Sci. Technol. 30, 055008 (2015). https://doi.org/10.1088/0268-1242/30/5/055008

    Article  CAS  Google Scholar 

  27. S. Taniguchi, Stresses developed during the oxidation of metals and alloys. Trans. Iron Steel Inst. Jpn. 25, 3–13 (1985). https://doi.org/10.2355/isijinternational1966.25.3

    Article  CAS  Google Scholar 

  28. H.S. Chin, L.S. Chao, The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film. J. Nanomater. (2013). https://doi.org/10.1155/2013/424953

    Article  Google Scholar 

  29. A. Escobedo-Morales, I.I. Ruiz-López, M.D. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J.E. Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon. 5, e015105 (2019). https://doi.org/10.1016/j.heliyon.2019.e01505

    Article  Google Scholar 

  30. Y.-T. Li, C.-F. Han, J.-F. Lin, Characterization of the electrical and optical properties for a-IGZO/Ag/a-IGZO triple-layer thin films with different thickness depositions on a curved glass substrate. Opt. Mater. Express. 9, 3414–3419 (2019). https://doi.org/10.1364/OME.9.003414

    Article  CAS  Google Scholar 

  31. T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305

    Article  CAS  Google Scholar 

  32. S. Taniguchi, M. Yokozeki, M. Ikeda, T.K. Suzuki, Transparent oxide thin-film transistors using n-(In2O 3)0:9(SnO2)0:1/InGaZnO4 modulation-doped heterostructures. Jpn. J. Appl. Phys. 50, 04DF11 (2011). https://doi.org/10.1143/JJAP.50.04DF11

    Article  CAS  Google Scholar 

  33. G. Pourtois, J. Genoe, P. Heremans, A.D. de Jamblinne, Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects. J. Phys. D. 48, 435104 (2015). https://doi.org/10.1088/0022-3727/48/43/435104

    Article  CAS  Google Scholar 

  34. F.J. Serrao, K.M. Sandeep, S.M. Dharmaprakash, Annealing-induced modifications in sol–gel spin-coated Ga:ZnO thin films. J. Sol-Gel Sci. Technol. 78, 438–445 (2016). https://doi.org/10.1007/s10971-016-3958-7

    Article  CAS  Google Scholar 

  35. Nandani, A. Supriyanto, A.H. Ramelan, F. Nurosyid, in Effect of Annealing Temperature on Optical Properties of TiO2 18 NR-T Type Thin Film, J. Phys. Conf. Ser., 2018, p. 12016. https://doi.org/10.1088/1742-6596/1011/1/012016.

  36. M.F. Kasim, R. Rusdi, S.A. Kamil, N. Kamarulzaman, in The Effect of Annealing Temperature on the Band Gap of ZnO Nano Materials, Adv. Mater. Res., 2012, pp. 165–168.

  37. J.W. Jeon, D.W. Jeon, T. Sahoo, M. Kim, J.H. Baek, J.L. Hoffman, N.S. Kim, I.H. Lee, Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide film. J. Alloys Compd. 509, 10062–10065 (2011). https://doi.org/10.1016/j.jallcom.2011.08.033

    Article  CAS  Google Scholar 

  38. J.C. Nie, J.Y. Yang, Y. Piao, H. Li, Y. Sun, Q.M. Xue, C.M. Xiong, R.F. Dou, Q.Y. Tu, Quantum confinement effect in ZnO thin films grown by pulsed laser deposition. Appl. Phys. Lett. 93, 173104 (2008). https://doi.org/10.1063/1.3010376

    Article  CAS  Google Scholar 

  39. K. Fleischer, E. Norton, D. Mullarkey, D. Caffrey, I.V. Shvets, Quantifying the performance of P-type transparent conducting oxides by experimental methods. Materials 10, 19–22 (2017). https://doi.org/10.3390/ma10091019

    Article  CAS  Google Scholar 

  40. A.J. De Jamblinne, G. Pourtois, J. Genoe, P. Heremans, Defects in amorphous semiconductors: the case of amorphous indium gallium zinc oxide. Phys. Rev. Appl. 9, 054039 (2018). https://doi.org/10.1103/PhysRevApplied.9.054039

    Article  Google Scholar 

  41. M.D. McCluskey, S.J. Jokela, Defects in ZnO. J. Appl. Phys. 106, 071101 (2009). https://doi.org/10.1063/1.3216464

    Article  CAS  Google Scholar 

  42. T. Hiramatsu, M. Nakashima, E. Kikuchi, N. Ishihara, M. Tsubuku, K. Dairiki, S. Yamazaki, Correlation between crystallinity and oxygen vacancy formation in In-Ga-Zn oxide. Jpn. J. Appl. Phys. 55, 021203 (2016). https://doi.org/10.7567/JJAP.55.021203

    Article  CAS  Google Scholar 

  43. H.J. Quah, Z. Hassan, W.F. Lim, A two-step growth route of ternary aluminium doped zirconium oxide film on silicon. J. Alloys Compd. 777, 736–748 (2019). https://doi.org/10.1016/j.jallcom.2018.10.359

    Article  CAS  Google Scholar 

  44. M. Thitsa, S. Albin, in Band Gap Tuning of Macro-porous Si Photonic Crystals by Thermally Grown SiO2 Interfacial Layer, ECS Trans., 2008, pp. 1–9. https://doi.org/10.1149/1.2890419.

  45. N. Tiwari, H.P.D. Shieh, P.T. Liu, Structural, optical, and photoluminescence study of ZnO/IGZO thin film for thin film transistor application. Mater. Lett. 151, 53–56 (2015). https://doi.org/10.1016/j.matlet.2015.03.043

    Article  CAS  Google Scholar 

  46. N. Tiwari, R.N. Chauhan, H.P.D. Shieh, P.T. Liu, Y.P. Huang, Photoluminescence and reliability study of ZnO cosputtered IGZO thin-film transistors under various ambient conditions. IEEE Trans. Electron Device 63, 1578–1581 (2016). https://doi.org/10.1109/TED.2016.2525799

    Article  CAS  Google Scholar 

  47. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996). https://doi.org/10.1063/1.362349

    Article  CAS  Google Scholar 

  48. D. Thapa, J. Huso, J.L. Morrison, C.D. Corolewski, M.D. McCluskey, L. Bergman, Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films. Opt. Mater. 58, 382–389 (2016). https://doi.org/10.1016/j.optmat.2016.05.008

    Article  CAS  Google Scholar 

  49. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale. 6, 10224–10234 (2014). https://doi.org/10.1039/c4nr01887g

    Article  CAS  Google Scholar 

  50. N.S. Han, H.S. Shim, J.H. Seo, S.Y. Kim, S.M. Park, J.K. Song, Defect states of ZnO nanoparticles: discrimination by time-resolved photoluminescence spectroscopy. J. Appl. Phys. 107, 084306 (2010). https://doi.org/10.1063/1.3382915

    Article  CAS  Google Scholar 

  51. A. Janotti, C.G. Van De Walle, New insights into the role of native point defects in ZnO. J. Cryst. Growth. 287, 58–65 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.043

    Article  CAS  Google Scholar 

  52. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photouminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78, 2285–2287 (2001). https://doi.org/10.1063/1.1361288

    Article  CAS  Google Scholar 

  53. G.N. Narayanan, R.S. Ganesh, A. Karthigeyan, Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods. Thin Solid Films 598, 39–45 (2016). https://doi.org/10.1016/j.tsf.2015.11.071

    Article  CAS  Google Scholar 

  54. M. Asghar, K. Mahmood, B.M. Samaa, S.R. Ejaz, N.U. Ain, Effect of annealing temperature on the structural and optical properties of un-doped bulk ZnO. Mater. Today Proc. 2, 5572–5577 (2015). https://doi.org/10.1016/j.matpr.2015.11.088

    Article  Google Scholar 

  55. S. Kaya, E. Yilmaz, Effects of interfacial layer on the electrical properties of n-ZnO/p-Si heterojunction diodes between 260 and 340 K. J. Mater. Sci. Mater. 30, 12170–12179 (2019). https://doi.org/10.1007/s10854-019-01575-8

    Article  CAS  Google Scholar 

  56. B. Abdallah, A.K. Jazmati, R. Refaai, Oxygen effect on structural and optical properties of ZnO thin films deposited by RF magnetron sputtering. Mater. Res. 20, 607–612 (2017). https://doi.org/10.1590/1980-5373-MR-2016-0478

    Article  CAS  Google Scholar 

  57. R.A. Street, T.N. Ng, R.A. Lujan, I. Son, M. Smith, S. Kim, T. Lee, Y. Moon, S. Cho, Sol-gel solution-deposited InGaZnO thin film transistors. ACS Appl. Mater. Interfaces. 6, 4428–4437 (2014). https://doi.org/10.1021/am500126b

    Article  CAS  Google Scholar 

  58. S. Sugumaran, M.N.B. Ahmad, M.F. Jamlos, C.S. Bellan, S. Chandran, M. Sivaraj, New possibility on InZnO nano thin film for green emissive optoelectronic devices. Opt. Mater. 54, 67–73 (2016). https://doi.org/10.1016/j.optmat.2016.02.007

    Article  CAS  Google Scholar 

  59. V.P. Singh, D. Das, C. Rath, Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles. Mater. Res. Bull. 48, 682–686 (2013). https://doi.org/10.1016/j.materresbull.2012.11.026

    Article  CAS  Google Scholar 

  60. P. Guo, H. Pan, Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens. Actuators B 114, 762–767 (2006). https://doi.org/10.1016/j.snb.2005.07.040

    Article  CAS  Google Scholar 

  61. J. Chandradass, D.S. Bae, K.H. Kim, A simple method to prepare indium oxide nanoparticles: structural, microstructural and magnetic properties. Adv. Powder Technol. 22, 370–374 (2011). https://doi.org/10.1016/j.apt.2010.05.006

    Article  CAS  Google Scholar 

  62. A. Ayeshamariam, M. Bououdina, C. Sanjeeviraja, Optical, electrical and sensing properties of In2O3 nanoparticles. Mater. Sci. Semicond. Process. 16, 686–695 (2013). https://doi.org/10.1016/j.mssp.2012.12.009

    Article  CAS  Google Scholar 

  63. X. Liu, G. Qiu, Y. Zhao, N. Zhang, R. Yi, Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods. J. Alloys Compd. 439, 275–278 (2007). https://doi.org/10.1016/j.jallcom.2006.08.062

    Article  CAS  Google Scholar 

  64. K. Bahrami, Z. Karami, Core/shell structured zno@sio2-ttip composite nanoparticles as an effective catalyst for the synthesis of 2-substituted benzimidazoles and benzothiazoles. J. Exp. Nanosci. 13, 272–283 (2018). https://doi.org/10.1080/17458080.2018.1542511

    Article  CAS  Google Scholar 

  65. B. Jabeen, U. Rafique, Synthesis and application of metal doped silica particles for adsorptive desulphurization of fuels. Environ. Eng. Res. 19, 205–214 (2014). https://doi.org/10.4491/eer.2014.017

    Article  Google Scholar 

  66. J.W. Kim, Y.S. Kim, S.J. Hong, T.H. Hong, J.I. Han, Physical and electrical properties of SiO2 layer synthesized by eco-friendly method. Jpn. J. Appl. Phys. 49, 05EA02 (2010). https://doi.org/10.1143/JJAP.49.05EA02

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from Malaysia Ministry of Education (MOE) under LRGS (Wide Band Gap Semiconductor), Project No: 203/CINOR/6720013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabihah Kasim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasim, N., Hassan, Z., Lim, W.F. et al. Effect of annealing temperature on physical and electrical properties of solution-processed polycrystalline In2Ga2ZnO7 thin film. J Mater Sci: Mater Electron 31, 9705–9718 (2020). https://doi.org/10.1007/s10854-020-03516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03516-2

Navigation