Skip to main content

Advertisement

Log in

New approach for synthesis of nano-sized CaCu3Ti4O12 powder by economic and innovative method

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, calcium carbonate (CaCO3), copper oxide (CuO) and titanium oxide (TiO2) were used as precursors to synthesize nano-sized calcium copper titanate CaCu3Ti4O12 (CCTO) powder using environmental friendly and modified sonochemical-assisted process. The precursor mixtures were sonicated at 80 °C for 4 h to get a fully precipitated and homogenous product. A pure phase of CCTO powder was obtained at 900 °C. Various techniques were employed to study the phase formation and structural aspects of the calcined CCTO such as XRD, FTIR, HRTEM, TGA and dielectric spectroscopy. The XRD results confirm the formation single phase with cubic structure of the CCTO phase. The absorption bands in FTIR at 400–700 cm−1, which arise from the mixed vibrations of CuO4 and TiO6 groups, are prevailing in the CCTO structure. Moreover, the HR-TEM micrographs reveal a highly oriented single cubic crystal structure of particle size ~ 4.78 nm. In addition, the dielectric study discloses that the dielectric constant ε′ increased with increasing the calcination temperature up to 900 °C escorted by a decrease of loss factor (tanδ). This can be attributed to the formation of pure CCTO phase and the highly dense microstructure at high temperatures. Giant dielectric constant ε′ up to (106–105) exhibited at low frequency (1–1000 Hz). It is deduced that the optimum calcination temperature of the prepared CCTO must not exceed the temperature range (800–900 °C). Furthermore, the prepared CCTO nanopowder is a promising material for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Jong-Kuk, K. Nam-Kyoung, P. Byung-Ok, J. Mater. Sci. 35, 4995–4999 (2000)

    Article  Google Scholar 

  2. M. Afqir, M. Elaatmani, A. Zegzouti, A. Oufakir, M. Daoud, J. Mater. Sci. 31, 3048–3056 (2020)

    CAS  Google Scholar 

  3. S.J.S. Flora, G. Flora, G. Saxena, Environmental occurrence, health effects and management of lead poisoning, in Lead: Chemistry Analytical Aspects, Environmental Impact and Health Effects, Chap. 4, ed. by S.B. Cascas, J. Sordo (Elsevier Science B.V., Amsterdam, 2006)

    Google Scholar 

  4. U.S. National Library of Medicine, TOXNET—Toxicology Data Network; HSDB—Hazardous Substances Data Bank; Barium Compounds, Accessed Nov. 4, (2015).

  5. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    Article  CAS  Google Scholar 

  6. J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703-1–093703-5 (2005)

    Google Scholar 

  7. W. Li, R.W. Schwartz, Phys. Rev. B 75, 012104-1–012104-4 (2007)

    Google Scholar 

  8. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105-1–052105-4 (2002)

    Article  Google Scholar 

  9. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102-1–172102-4 (2004)

    Article  Google Scholar 

  10. H.J. Hwang, K. Niihara, J. Mater. Sci. 33, 549–558 (1998)

    Article  CAS  Google Scholar 

  11. T. Ishii, M. Endo, K. Masuda, K. Ishida, Appl. Phys. Lett. 102, 062901-1–062901-4 (2013)

    Google Scholar 

  12. P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, J. Alloys Comp. 650, 59–64 (2015)

    Article  CAS  Google Scholar 

  13. J. Liu, R.W. Smith, W.N. Mei, Chem. Mater. 19, 6020–6024 (2007)

    Article  CAS  Google Scholar 

  14. Z. Yang, Y. Zhang, R. Xiong, J. Shi, Mater. Res. Bull. 48, 310–314 (2013)

    Article  CAS  Google Scholar 

  15. S.M. Moussa, B.J. Kennedy, Mater Res B 36(13-14), 2525–2529 (2001)

    Article  CAS  Google Scholar 

  16. N. Wongpisutpaisan, N. Vittayakorn, A. Ruangphanit, Pecharapa W. 149, 56–60 (2013)

    CAS  Google Scholar 

  17. Shengtao, L., Hui, W., Chunjiang, L., Yang, Y., Jianying, L.: Dielectric properites of Al-doped CaCu3Ti4O12 ceramics by co-precipitation method. In: Proceed. Int. Conf. Electrical Insulating Materials (ISEIM), IEEE, pp. 23–26 (2011)

  18. M.C. Sonia, P. Kumar, Process Appl. Ceram. 11, 154–159 (2017)

    Article  CAS  Google Scholar 

  19. M.M. Ahmad, E. Al-Libidi, A. Al-Jaafari, S. Ghazanfar, K. Yamada, Appl. Phys. A 116, 1299–1306 (2014)

    Article  CAS  Google Scholar 

  20. W.X. Yuana, S.K. Harka, W.N. Meib, J. Ceram. Process. Res. 10, 696–699 (2009)

    Google Scholar 

  21. V. Saez, T.J. Mason, Molecules 14, 4284–4299 (2009)

    Article  CAS  Google Scholar 

  22. G. Cravotto, P. Cintas, Chem. Soc. Rev. 35, 180–196 (2006)

    Article  CAS  Google Scholar 

  23. G. Kianpour, M. Salavati-Niasari, H. Emadi, Ultrason. Sonochem. 20, 418–424 (2013)

    Article  CAS  Google Scholar 

  24. A. Aronne, M. Turco, G. Bagnasco, P. Pernice, M. Di Serio, N.J. Clayden, E. Marenna, E. Fanelli, Chem. Mater. 17, 2081–2090 (2005)

    Article  CAS  Google Scholar 

  25. S. Guillemet-Fritsch, T. Lebey, M. Boulos, Durand B. J. Eur. Ceram. Soc. 26, 1245–1257 (2006)

    Article  CAS  Google Scholar 

  26. S. Jin, H. Xia, Y. Zhang, J. Guo, J. Xu, Mater. Lett. 61, 1404–1407 (2007)

    Article  CAS  Google Scholar 

  27. S. Singh, S.B. Krupanidhi, Phys. Letter A 367, 356–359 (2007)

    Article  CAS  Google Scholar 

  28. S.A. Gad, G.M. El Komy, A.M. Moustafa, A.A. Ward, Indian J. Phys. 93, 1009–1018 (2019)

    Article  CAS  Google Scholar 

  29. P. Thomas, K. Dwarakanath, K. Varma, T. Kutty, J. Therm. Anal. Calorim. 95, 267–272 (2008)

    Article  Google Scholar 

  30. P. Thomas, K. Dwarakanath, K.B.R. Varma, T.R.N. Kutty, J. Phys. Chem. Solids 69, 2594–2604 (2008)

    Article  CAS  Google Scholar 

  31. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321–1323 (2002)

    Article  CAS  Google Scholar 

  32. H. Doweidar, K. El-Egili, R. Ramadan, M. Al-Zaibani, J. Non-Crystal. Solids 466, 37–44 (2017)

    Article  Google Scholar 

  33. A.F.L. Almeida, P.B.A. Fechine, M.P.F. Graca, M.A. Valente, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 20, 163–170 (2009)

    Article  CAS  Google Scholar 

  34. L. Bayarjargal, C.-J. Fruhner, N. Schrodt, B. Winkler, Phys. Earth Planet. Inter. 281, 31–45 (2018)

    Article  CAS  Google Scholar 

  35. M. Todaro, A. Alessi, L. Sciortino, S. Agnello, M. Cannas, F.M. Gelardi, G. Buscarino, J. Spectrosc. (2016). https://doi.org/10.1155/2016/8074297

    Article  Google Scholar 

  36. N. Kolev, R.P. Bontchev, A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchuk, M.N. Iliev, Phys. Rev. B 66(13), 132102 (2002)

    Article  Google Scholar 

  37. L. Singh, I.W. Kim, B.C. Sin, K.D. Mandal, U.S. Rai, A. Ullah, H. Chung, Y. Lee, RSC Adv. 4(95), 52770–52784 (2014)

    Article  CAS  Google Scholar 

  38. S.A. Gad, A.M. Moustafa, A.A. Ward, J. Inorg. Organomet. Polym. 25, 1077–1087 (2015)

    Article  CAS  Google Scholar 

  39. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 474–476 (2001)

    Article  CAS  Google Scholar 

  40. J. Li, K. Cho, N. Wu, A. Ignatiev, IEEE Trans. 11, 534–541 (2004)

    CAS  Google Scholar 

Download references

Acknowledgement

This project was supported financially by the Science Technology Development Fund (STDF) Egypt, Grant No. 15184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ramadan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, R.M., Labeeb, A.M., Ward, A.A. et al. New approach for synthesis of nano-sized CaCu3Ti4O12 powder by economic and innovative method. J Mater Sci: Mater Electron 31, 9065–9075 (2020). https://doi.org/10.1007/s10854-020-03490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03490-9

Navigation