Skip to main content

Advertisement

Log in

Impact of Co–Ni substitution on the structural and dielectric properties of calcium copper titanate

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

CCTO ceramics are known for their high dielectric constant and low loss, making them potential candidates for use in various electronic and energy storage applications. The dielectric properties of CCTO ceramics can be tuned by doping of various elements. In addition to the dielectric properties, Co–Ni substitution has also been found to affect other properties of CCTO ceramics, such as the thermal and electrical conductivity. Therefore, Co–Ni substitution can be a useful strategy for tailoring the properties of CCTO ceramics for specific applications. In this research work, the sol–gel auto-combustion technique is used for the synthesis of Co–Ni-substituted calcium copper titanate, Ca(1-x)Co(x)Cu3Ti(4-y)Ni(y)O22 (x = 0.0/y = 0.0, x = 0.1/y = 0.3 and x = 0.2/y = 0.4). X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and impedance analyzer have all been used to examine the structural and dielectric properties of synthesized samples. X-ray diffraction study shows the presence of crystalline structure of calcium copper titanate. The presence of peaks at 422 cm−1, 503 cm−1, and 506 cm−1 in FTIR spectra also confirms the presence of CCTO. The Debye-type relaxation technique and Maxwell–Wagner model describe dielectric characteristics. The grain boundary resistance (Rgb) significantly contributes to the dielectric properties of synthesized calcium copper titanate as seen by the Cole–Cole plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P Thomas J. Eur. Ceram. Soc. 32 1681 (2011)

    Article  Google Scholar 

  2. J Wang, J Wang, R Xu, Y Sun, B Zhang and W Chen J. Alloys Compd. 653 14 (2015)

    Article  Google Scholar 

  3. Z Kafi and A Kompany J. Alloys Compd. 727 168 (2017)

    Article  Google Scholar 

  4. A K Rai, N K Singh, S K Lee and K D Mandal J. Alloys Compd. 509 8901 (2011)

    Article  Google Scholar 

  5. A F L Almeida, P B A Fechine, L C Kretly and S B Sombra J. Mater. Sci. 41 4623 (2006)

    Article  ADS  Google Scholar 

  6. H S Kushwaha, N A Madhar, B Ilahi, P Thomas, A Halder and R Vaish Sci. Rep. 6 10 (2016)

    Article  Google Scholar 

  7. Z Xu, H Qiang and Y Chen Chen Mater. Chem. Phys. 191 1 (2017)

    Article  Google Scholar 

  8. T Li, D Liu, H Dai, H Xiang, Z Chen, H He and Z Chen J. Alloys Compd. 599 145 (2014)

    Article  Google Scholar 

  9. S H Hong, D Y Kim and H M Park J. Am. Ceram. Soc. 90 2118 (2007)

    Article  Google Scholar 

  10. K D Mandal and A K Rai J. Alloys Compd. 478 771 (2009)

    Article  Google Scholar 

  11. A K Rai and K D Mandal J. Alloys Compd. 491 507 (2010)

    Article  Google Scholar 

  12. S N Kane, A Mishra and A K Dutta J. Phys. Conf. Ser. 755 1 (2016)

    Article  Google Scholar 

  13. D Capsoni, M Bini, V Massarotti, G Chiodelli, M C Mozzatic and C B Azzoni J. Solid State Chem. 177 4494 (2004)

    Article  ADS  Google Scholar 

  14. Z Zhang, X Liu, X Wang and Y Wu J. Alloys Compd. 525 114 (2012)

    Article  Google Scholar 

  15. I Ali, M U Islam, M Naeem, H M Khan and M A Iqbal Mater. Res. Bull. 49 338 (2013)

    Article  Google Scholar 

  16. M J Iqbal and S Farooq Mater. Res. Bull. 44 2050 (2009)

    Article  Google Scholar 

  17. S Ounnunkad Solid State Commun. 138 472 (2006)

    Article  ADS  Google Scholar 

  18. G Mukhtar, J Mohammed, T T T Carol, N Halilu, S Sharma, U M Isah, S K Godara and A K Srivastava Solid State Sci. 113 106549 (2021)

    Article  Google Scholar 

  19. A H Najafabadi Ceram. Int. 42 13625 (2016)

    Article  Google Scholar 

  20. T Xie, L Xu and C Liu Powder Technol. 232 87 (2012)

    Article  Google Scholar 

  21. T A Alrebdi et al. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 280 115682 (2022)

    Article  Google Scholar 

  22. J Mohammed, T T T Carol, H Y Hafeez, D Basandrai, G R Bhadu, S K Godara, S B Narang and A K Srivastava Res. Phys. 13 102307 (2019)

    Google Scholar 

  23. M Feng and X Huang Eng. Asp. 441 556 (2014)

    Article  Google Scholar 

  24. A S Attar, E S Sichani and S Sharafi J. Mater. Res. Technol. 6 108 (2017)

    Article  Google Scholar 

  25. J Mohammed, T T T Carol, H Y Hafeez, B I Adamu, Y S Wudil, Z I Takai, S K Godara and A K Srivastava J. Phys. Chem. Solids 126 85 (2019)

    Article  ADS  Google Scholar 

  26. L Singh, U S Rai, K D Mandal and N B Singh Prog. Cryst. Growth Charact. Mater. 60 15 (2014)

    Article  Google Scholar 

  27. S Jesurani and S Kanagesan J. Mater. Sci. Mater. Electron. 23 668 (2012)

    Article  Google Scholar 

  28. M J Iqbal, M N Ashiq and I H Gul J. Magn. Magn. Mater. 322 1720 (2010)

    Article  ADS  Google Scholar 

  29. L Singh, U S Rai, K Mandal, B C Sin, S I Lee and Y Lee Ceram. Int. 40 10073 (2014)

    Article  Google Scholar 

  30. Z Maleknejad, K Gheisari and A H Raouf J. Supercond. Nov. Magn. 29 2523 (2016)

    Article  Google Scholar 

  31. T Hussain, S A Siddiqi, S Atiq and M S Awan Prog. Nat. Sci. Mater. Int. 23 487 (2013)

    Article  Google Scholar 

  32. J Mohammed et al. Springer International Publishing 369 (2018)

  33. P Liu, Y Lai, Y Zeng and S Wu J. Alloys Compd. 650 59 (2015)

    Article  Google Scholar 

  34. J Liu, C G Duan and W N Mei J. Appl. Phys. 98 1 (2005)

    Google Scholar 

  35. Y Bai and J Zhou J. Magn. Magn. Mater. 278 208 (2004)

    Article  ADS  Google Scholar 

  36. M G Chourashiya and J Y Patil Chem. Phys. 109 39 (2008)

    Google Scholar 

  37. H Malik, M A Khan, A Hussain and M F Warsi Int. 44 605 (2018)

    Google Scholar 

  38. Z Yang, L Zhang and X Chao J. Alloys Compd. 509 8716 (2011)

    Article  Google Scholar 

  39. W Li and S Qiu J. Mater. Sci. Technol. 26 682 (2010)

    Article  Google Scholar 

  40. L. Sahoo, S. Bhuyan, and S. N. Das Appl. Phys. A Mater. Sci. Process. 128 1 (2022)

  41. S N Das, S Pradhan, S Bhuyan and R N P Choudhary Das J. Electron. Mater. 46 1637 (2017)

    Article  ADS  Google Scholar 

  42. J Li, R Jia, L Hou, L Gao and K Wu Li J. Alloys Compd. 644 824 (2015)

    Article  Google Scholar 

  43. J Mohammed et al. Ceram. Int. 46 7187 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

For all of the characterization, the authors would like to acknowledge Central Instrumentation Facility (CIF), Lovely Professional University, Phagwara, India-144411.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Carol, T.T.T., Mohhamed, J. et al. Impact of Co–Ni substitution on the structural and dielectric properties of calcium copper titanate. Indian J Phys 97, 4177–4185 (2023). https://doi.org/10.1007/s12648-023-02748-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02748-2

Keywords

Navigation