Skip to main content
Log in

Optimization of the nitrogen content for room temperature rapid synthesis of CuI thin films via liquid iodination method using Cu3N film as precursor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we demonstrate that CuI films can be obtained by the liquid–phase iodination method with the chemical reaction time only being 1 min between Cu3N and aqueous iodine solution at room temperature. This is a simple and eco-friendly method with high transparency and low resistivity. The Cu3N precursors were prepared by reactive DC magnetron sputtering using different N2 partial pressures. The effect of nitrogen content of precursor (Cu3N) on the structural, electrical, and optical properties of CuI thin films was discussed. Electronegativity property was used to explain the growth mechanism of CuI films prepared by different nitrogen content in the precursor. By growing the CuI films with a N2:Ar gas ratio of 5:2, the average transmittance achieved was 75% in the visible spectral range, and the lowest resistivity achieved was 3.67 × 10–2 Ω cm. These results suggest that the liquid iodination method using Cu3N film as precursor (N2:Ar gas ratio of 5:2) was suitable for preparing high-quality CuI films for application in transparent electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Gharibzadeh, A. Moshaii, B.A. Nejand, V. Ahmadi, Mater. Lett. 202, 154 (2017)

    Article  CAS  Google Scholar 

  2. G.C. Lin, F.Z. Zhao, Y. Zhao, D.Y. Zhang, L.X. Yang, X. Xue, X.H. Wang, C. Qu, Q.S. Li, L. Zhang, Materials 9, 990 (2016)

    Article  Google Scholar 

  3. C. Yang, M. Kneiβ, F.L. Schein, M. Lorenz, M. Grundmann, Sci. Rep. 6, 21937 (2016)

    Article  CAS  Google Scholar 

  4. N. Yamada, Y. Kondo, R. Ino, Phys. Status Solidi A. 216, 1700782 (2018)

    Article  Google Scholar 

  5. H. Sakamoto, S. Igarashi, M. Uchida, K. Niume, M. Nagai, Org. Electron. 13, 514 (2012)

    Article  CAS  Google Scholar 

  6. M. Rusop, T. Shirata, P.M. Sirimanne, T. Soga, T. Jimbo, M. Umeno, Appl. Surf. Sci. 252, 7389 (2006)

    Article  CAS  Google Scholar 

  7. H. Iimori, S. Yamane, T. Kitamura, K. Murakoshi, A. Imanishi, Y. Nakato, J. Phys. Chem. C 112, 11586 (2008)

    Article  CAS  Google Scholar 

  8. P. Stakhira, V. Cherpak, D. Volynyuk, F. Ivastchyshyn, Z. Hotra, V. Tataryn, G. Luka, Solid Films 518, 7016 (2010)

    Article  CAS  Google Scholar 

  9. C. Yang, M. Kneiβ, M. Lorenz, M. Grundmann, Proc. Natl. Acad. Sci. USA 113, 12929 (2016)

    Article  CAS  Google Scholar 

  10. B.L. Zhu, X.Z. Zhao, Phys. Status Solidi A 208, 91 (2011)

    Article  CAS  Google Scholar 

  11. M. Grundmann, F.L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, H. Von Wenckstern, Phys. Status Solidi A 210, 1671 (2013)

    Article  CAS  Google Scholar 

  12. F.L. Schein, H.V. Wenckstern, M. Grundmann, Appl. Phys. Lett. 102, 092109 (2013)

    Article  Google Scholar 

  13. N. Yamada, R. Ino, Y. Ninomiya, Chem. Mater. 28, 4971 (2016)

    Article  CAS  Google Scholar 

  14. M. Wang, H. Wei, T. Wu, C. Yang, P. Han, F. Juan, Y. Chen, F. Xu, B. Cao, Phys. B 573, 45 (2019)

    Article  CAS  Google Scholar 

  15. N. Posopa, A. Sakulkalavek, N. Chanlek, J. Kaewkhao, R. Sakdanuphab, Superlattices Microstruct. 141, 106501 (2020)

    Article  CAS  Google Scholar 

  16. F.J. Genga, L. Yang, B. Dai, S. Guoa, G. Gao, L. Xu, J. Han, A. Bolshakov, J. Zhu, Surf. Coat. Technol. 361, 396 (2019)

    Article  Google Scholar 

  17. M. Zi, J. Li, Z. Zhang, X. Wang, J. Han, X. Yang, Z. Qiu, H. Gong, Z. Ji, B. Cao, Phys. Status Solidi A 212, 1466 (2015)

    Article  CAS  Google Scholar 

  18. S.G. Wang, Q. Zhang, S.F. Yoon, J. Ahn, Q. Wang, D.J. Yang, Q. Zhou, N.L. Yue, Adv. Opt. Mater. 24, 509 (2003)

    Article  Google Scholar 

  19. S. Inudo, M. Miyake, T. Hirato, Phys. Status Solidi A 210, 2395 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the King Mongkut’s Institute of Technology Ladkrabang (KMITL: Grant Number KREF146202), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparporn Sakulkalavek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khumtong, T., Chanlek, N., Klongratog, B. et al. Optimization of the nitrogen content for room temperature rapid synthesis of CuI thin films via liquid iodination method using Cu3N film as precursor. J Mater Sci: Mater Electron 31, 9486–9491 (2020). https://doi.org/10.1007/s10854-020-03489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03489-2

Navigation