Skip to main content
Log in

Enhancement in magnetoelectric properties of lead-free multiferroic composite through high-energy mechanical milling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferrite-Ferroelectric composites with the generic formula y(Mn0.5Cu0.5Fe2O4)1 − y[Ca0.1Ba0.9Zr0.1Ti0.9] (y = 25%, 50% and 75%) are prepared by solid-state reaction. One of the prepared samples of the composites 25%Mn0.5Cu0.5Fe2O4–75%Ca0.1Ba0.9Zr0.1Ti0.9O3 (MCF-CBZT) is subjected to high-energy mechanical milling for different durations (12 h, 18 h and 30 h). The compositional stoichiometry of all the samples is checked by Energy Dispersive Spectroscopy. All the un-milled and milled samples are characterized by X-ray diffraction, scanning electron microscopy, FTIR, magnetometry, and dielectric and magnetoelectric coefficient measurements. Magnetoelectric composite possesses biphasic surrounding to exhibit complex behavior of ME effect. The present study reveals influence of mechanical milling on MCF-CBZT magnetoelectric composite. The XRD confirms the presence of ferrite and ferroelectric phases for all the samples and microstructural changes appear in SEM images of milled specimens. FTIR spectra show four characteristic bands in 400–800 cm−1 range. Saturation magnetization and Curie temperature decrease as milling duration increases. Relaxed broad doublet with the distribution of nuclear hyperfine fields is found in Mossbauer spectra indicating good coupling between ferrite-ferroelectric phases caused by mechanical milling for the multiferroic composite. The frequency response of dielectric constant and loss tangent is recorded in the frequency range from 100 Hz to 1 MHz. The static value of magnetoelectric factor has been studied as a function of magnetic field for un-milled and milled MCF-CBZT samples. The maximum value 382 μV/cm·Oe of (ME)H is observed for the 18 h milled MCF-CBZT sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Venkata Ramana, F. Figueiras, M.P.F. Graca, M.A. Valente, Observation of magnetoelectric coupling and local piezoresponse in modified (Na0.5Bi0.5)TiO3–BaTiO3–CoFe2O4 lead-free composites. Dalton Trans. 43, 9934–9943 (2014). https://doi.org/10.1039/C4DT00956H

    Article  Google Scholar 

  2. Y. Cheng, B. Peng, Z. Hu, Z. Zhou, M. Liu, Recent development and status of magnetoelectric materials and devices. Phys. Lett. A 382, 3018–3025 (2018). https://doi.org/10.1016/j.physleta.2018.07.014

    Article  CAS  Google Scholar 

  3. M.B. Kothale, K.K. Patankar, S.L. Kadam, V.L. Mathe, A.V. Rao, B.K. Chougule, Dielectric behaviour and magnetoelectric effect in copper–cobalt ferrite+barium lead titanate composites. Mater. Chem. Phys. 77, 691–696 (2002). https://doi.org/10.1016/S0254-0584(02)00135-9

    Article  Google Scholar 

  4. J.G. Wan, X.W. Wang, Y.J. Wu, M. Zeng, Y. Wang, H. Jiang, W.Q. Zhou, G.H. Wang, J.M. Liu, Magnetoelectric CoFe2O4–Pb(Zr, Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 86, 122501 (2005). https://doi.org/10.1063/1.1889237

    Article  CAS  Google Scholar 

  5. M.I. Bichurin, V.M. Petrov, R.V. Petrov Yu, V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev, Magnetoelectric sensor of magnetic field. Ferroelectrics 280, 199–202 (2002). https://doi.org/10.1080/00150190214814

    Article  CAS  Google Scholar 

  6. S.L. Kadam, K.K. Patankar, V.L. Mathe, M.B. Kothale, R.B. Kale, B.K. Chougule, Electrical properties and magnetoelectric effect in Ni0.75Co0.25Fe2O4+Ba0.8Pb0.2TiO3 composites. Mater. Chem. Phys. 78, 684–690 (2003). https://doi.org/10.1016/S0254-0584(02)00352-8

    Article  CAS  Google Scholar 

  7. M.I. Bichurin, V.M. Petrov, R.V. Petrov, G.N. Kapralov, Y.V. Kiliba, F.I. Bukashev, AYu Smirnov, A.S. Tatarenko, Magnetoelectric microwave devices. Ferroelectrics 280, 211–218 (2002). https://doi.org/10.1080/00150190214807

    Article  CAS  Google Scholar 

  8. J. Ryu, S. Priya, K. Uchino, H. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002). https://doi.org/10.1023/A:1020599728432

    Article  CAS  Google Scholar 

  9. S.S. Chougule, B.K. Chougule, Studies on electrical properties and the magnetoelectric effect on ferroelectric-rich (x)Ni0.8Zn0.2Fe2O4+(1−x)PZT ME composites. Smart Mater. Struct. 16, 493–497 (2007). https://doi.org/10.1088/0964-1726/16/2/030

    Article  CAS  Google Scholar 

  10. C.W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Lin, Coupled magnetic–electric properties and critical behavior in multiferroic particulate composites. J. Appl. Phys. 94, 5930 (2003). https://doi.org/10.1063/1.1614866

    Article  CAS  Google Scholar 

  11. Y.X. Liu, J.G. Wan, J.M. Liu, C.W. Nan, Effect of magnetic bias field on magnetoelectric coupling in magnetoelectric composites. J. Appl. Phys. 94, 5118 (2003). https://doi.org/10.1063/1.1613811

    Article  CAS  Google Scholar 

  12. N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, Multifunctional magnetoelectric materials for device applications. J. Phys.: Condens. Matter 27, 504002 (2015). https://doi.org/10.1088/0953-8984/27/50/504002/meta

    Article  CAS  Google Scholar 

  13. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5, 9 (2016). https://doi.org/10.3390/act5010009

    Article  Google Scholar 

  14. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L.M. Ardabili, T. Zhao, L.S. Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661–663 (2004). https://doi.org/10.1126/science.1094207

    Article  CAS  Google Scholar 

  15. J.F. Scott, Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012). https://doi.org/10.1039/C2JM16137K

    Article  CAS  Google Scholar 

  16. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007). https://doi.org/10.1038/nmat1805

    Article  CAS  Google Scholar 

  17. J.M. Hu, Z. Li, J. Wang, C.W. Nan, Electric-field control of strain-mediated magnetoelectric random access memory. J. Appl. Phys. 107, 093912 (2010). https://doi.org/10.1063/1.3373593

    Article  CAS  Google Scholar 

  18. Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, P.L. Yang, A.F. Rodriguez, A. Scholl, S.X. Wang, R. Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008). https://doi.org/10.1038/nmat2184

    Article  CAS  Google Scholar 

  19. A.R. Tanna, U.N. Trivedi, M.C. Chhantbar, H.H. Joshi, Influence of Jahn-Teller Cu2+ (3d9) ion on structural and magnetic properties of Al-Cr co-substituted CuFe2O4. Indian J. Phys. 87, 1087–1092 (2013). https://doi.org/10.1007/s12648-013-0341-1

    Article  CAS  Google Scholar 

  20. A.R. Tanna, H.H. Joshi, Influence of mechanical milling on structural and magnetic properties of Cu2+ substituted MnFe2O4. Indian J. Phys. 90, 981–989 (2016). https://doi.org/10.1007/s12648-015-0825-2

    Article  CAS  Google Scholar 

  21. M. Sahu, S.K. Pradhan, S. Hajra, B.K. Panigrahi, R.N.P. Choudhary, Studies of structural, electrical, and excitation performance of electronic material: europium substituted 0.9(Bi0.5Na0.5TiO3)-0.1(PbZr0.48Ti0.52O3). Appl. Phys. A 125, 183 (2019). https://doi.org/10.1007/s00339-019-2491-2

    Article  CAS  Google Scholar 

  22. K. Auromun, S. Hajra, R.N.P. Choudhary, B. Behera, Structural, dielectric and electrical characteristics of yttrium modified 0.7BiFeO3–0.3PbTiO3. Solid State Sci. 101, 106139 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106139

    Article  CAS  Google Scholar 

  23. A.R. Tanna, H.H. Joshi, Structural properties of high energy mechanical milled Ca-Zr doped BaTiO3:Ca0.1Ba0.9Zr0.1Ti0.9O3. AIP Conf. Proc. 1536, 827–828 (2013). https://doi.org/10.1063/1.4810483

    Article  CAS  Google Scholar 

  24. A.R. Tanna, H.H. Joshi, Effect of high energy mechanical milling on hysteresis and dielectric properties of CaxBa1-xZrxTi1-xO3 (x = 0 and 0.1) ferroelectric materials. Mater. Res. Express 5, 096302 (2018). https://doi.org/10.1088/2053-1591/aad610

    Article  CAS  Google Scholar 

  25. G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101 (1998). https://doi.org/10.1063/1.368109

    Article  CAS  Google Scholar 

  26. J.F. Scott, Applications of modern ferroelectrics. Science 315, 954–959 (2007). https://doi.org/10.1126/science.1129564

    Article  CAS  Google Scholar 

  27. D.R. Patil, B.K. Chougule, Effect of resistivity on magnetoelectric effect in (x)NiFe2O4-(1−x)Ba0.9Sr0.1TiO3 ME composites. J. Alloys. Compd. 470, 531–535 (2009). https://doi.org/10.1016/j.jallcom.2008.03.006

    Article  CAS  Google Scholar 

  28. S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling. Mater. Chem. Phys. 93, 224–230 (2005). https://doi.org/10.1016/j.matchemphys.2005.03.017

    Article  CAS  Google Scholar 

  29. J. Gass, H. Srikanth, N. Kislov, S.S. Srinivasan, Y. Emirov, Magnetization and magnetocaloric effect in ball-milled zinc ferrite powder. J. Appl. Phys. 103, 07B309 (2008). https://doi.org/10.1063/1.2829754

    Article  CAS  Google Scholar 

  30. N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos, Optical absorption red and blue shifts in ZnFe2O4 nanoparticles. Mat. Sci. Eng. B 153, 70–77 (2008). https://doi.org/10.1016/j.mseb.2008.10.032

    Article  CAS  Google Scholar 

  31. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1734 (1955). https://doi.org/10.1103/PhysRev.99.1727

    Article  CAS  Google Scholar 

  32. N.G. Popravko, A.S. Sidorkin, S.D. Milovidova, O.V. Rogazinskaya, IR spectroscopy of ferroelectric composites. Phys. Solid State 57, 522–526 (2015). https://doi.org/10.1134/S1063783415030233

    Article  CAS  Google Scholar 

  33. I. Fedorove, J. Lorenzana, P. Dore, G. De Marzi, P. Maselli, P. Calvani, S.W. Cheong, S. Koval, R. Migoni, Infrared-active phonons of LaMnO3 and CaMnO3. Phys. Rev. B 60, 11875–11878 (1999). https://doi.org/10.1103/PhysRevB.60.11875

    Article  Google Scholar 

  34. N. Sivakumar, A. Narayansamy, N. Ponpandian, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J. Appl. Phys. 101, 084116 (2007). https://doi.org/10.1063/1.2721379

    Article  CAS  Google Scholar 

  35. J.R. Morales, S. Tanju, W.P. Beyermann, J.E. Garay, Exchange bias in large three dimensionals iron oxide nanocomposites. Appl. Phys. Lett. 96, 013102 (2010). https://doi.org/10.1063/1.3277147

    Article  CAS  Google Scholar 

  36. A.R. Tanna, H.H. Joshi, Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. Int. J. Phys. Math. Sci. 7, 334–341 (2013). https://doi.org/10.5281/zenodo.1333917

    Article  Google Scholar 

  37. A. Kale, S. Gubbala, R.D.K. Misra, Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J. Magn. Magn. Mater. 277, 350–358 (2004). https://doi.org/10.1016/j.jmmm.2003.11.015

    Article  CAS  Google Scholar 

  38. J.Z. Jiang, G.F. Goya, H.R. Rechenberg, Magnetic properties of nanostructured CuFe2O4. J. Phys.: Condens. Matter 11, 4063 (1999). https://doi.org/10.1088/0953-8984/11/20/313

    Article  CAS  Google Scholar 

  39. S.J. Stewart, M.J. Tueros, G. Cernicchiaro, R.B. Scorzelli, Magnetic size growth in nanocrystalline copper ferrite. Solid State Commun. 129, 347–351 (2004). https://doi.org/10.1016/j.ssc.2003.11.010

    Article  CAS  Google Scholar 

  40. A.G. Flores, V. Raposo, L. Torres, J. Iniguez, Ferrimagnetic resonance of manganese ferrites with iron excess. Appl. Phys. A 73, 327–330 (2001). https://doi.org/10.1007/s003390100

    Article  CAS  Google Scholar 

  41. A.R. Tanna, K.M. Sosa, H.H. Joshi, Study of superparamagnetic nano particles of MnxCo1xFe2O4 ferrite system prepared by co-precipitation technique. Mater. Res. Express 4, 115010 (2017). https://doi.org/10.1088/2053-1591/aa9393

    Article  CAS  Google Scholar 

  42. K.K. Patankar, V.L. Mathe, R.N. Patil, B.K. Chougule, Structural analysis, magnetic properties, and magnetoelectric effect in piezomagnetic–piezoelectric composites. Mater. Chem. Phys. 96, 197–200 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.009

    Article  CAS  Google Scholar 

  43. M.A. Gilleo, Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages. J. Phys. Chem. Solids 13, 33–39 (1960). https://doi.org/10.1016/0022-3697(60)90124-4

    Article  CAS  Google Scholar 

  44. S.L. Kadam, K.K. Patanakar, C.M. Kanamadi, B.K. Chougule, Electrical conduction and magnetoelectric effect in Ni0.50Co0.50Fe2O4+Ba0.8Pb0.2TiO3 composites. Mater. Res. Bull. 39, 2265–2272 (2004). https://doi.org/10.1016/j.materresbull.2004.07.021

    Article  CAS  Google Scholar 

  45. N. Ponpandian, P. Balaya, A. Narayanasamy, Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys.: Condens. Matter 14, 3221 (2002). https://doi.org/10.1088/0953-8984/14/12/311

    Article  CAS  Google Scholar 

  46. S.A. Mazen, H.A. Dawoud, Temperature and composition dependence of dielectric properties in Li–Cu ferrite. Mater. Chem. Phys. 82, 557–566 (2003). https://doi.org/10.1016/S0254-0584(03)00200-1

    Article  CAS  Google Scholar 

  47. Y. Zhi, A. Chen, Maxwell-Wagner polarization in ceramic composites BaTiO3-(Ni0.3Zn0.7)Fe2.1O4. J. Appl. Phys. 91, 794 (2002). https://doi.org/10.1063/1.1421033

    Article  CAS  Google Scholar 

  48. W.A. Yager, The distribution of relaxation times in typical dielectrics. J. Appl. Phys. 7, 434–450 (1936). https://doi.org/10.1063/1.1745355

    Article  Google Scholar 

  49. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  CAS  Google Scholar 

  50. I.V. Lisnevskaya, N.A. Levshina, Influence of the preparation conditions and percolation threshold on the properties of lead zirconate titanate/cobalt nickel ferrite magnetoelectric composites. Inorg. Mater. 54, 851–858 (2018). https://doi.org/10.1134/S0020168518080113

    Article  CAS  Google Scholar 

  51. R.S. Devan, B.K. Chougule, Magnetic properties and dielectric behavior in ferrite/ferroelectric particulate composites. Phys. B 393, 161–166 (2007). https://doi.org/10.1016/j.physb.2007.01.001

    Article  CAS  Google Scholar 

  52. M. Ram, S. Chakrabarti, Dielectric and modulus studies on LiFe1/2Co1/2VO4. J. Alloys Compd. 462, 214–219 (2008). https://doi.org/10.1016/j.jallcom.2007.08.001

    Article  CAS  Google Scholar 

  53. K.P. Padmasree, D.K. Kanchan, A.R. Kulkarni, Impedance and Modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤x/y ≤ 3. Solid State Ion. 177, 475–482 (2006). https://doi.org/10.1016/j.ssi.2005.12.019

    Article  CAS  Google Scholar 

  54. A. Dutta, T.P. Sinha, S. Shannigrahi, Dielectric relaxation and electronic structure of double perovskite Sr2FeSbO6. J. Appl. Phys. 104, 064114 (2008). https://doi.org/10.1063/1.2978218

    Article  CAS  Google Scholar 

  55. V. Prakash, S.N. Choudhary, T.P. Sinha, Dielectric relaxation in complex perovskite oxide BaCo1/2W1/2O3. Phys. B 403, 103–108 (2008). https://doi.org/10.1016/j.physb.2007.08.015

    Article  CAS  Google Scholar 

  56. V. Prakash, A. Dutta, S.N. Choudhary, T.P. Sinha, Dielectric relaxation in perovskite Ba(Zn1/2W1/2)O3. Mat. Sci. Eng. B 142, 98–105 (2007). https://doi.org/10.1016/j.mseb.2007.07.007

    Article  CAS  Google Scholar 

  57. A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M.L. Bouazizi, A. Dhahri, Synthesis, structural and complex impedance spectroscopy studies of Ni0.4Co0.4Mg0.2Fe2O4 spinel ferrite. Phase Trans. 90(10), 942–954 (2017). https://doi.org/10.1080/01411594.2017.1309403

    Article  CAS  Google Scholar 

  58. S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, T.K. Nath, Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T= Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals. J. Alloys Compd. 656, 887–896 (2016). https://doi.org/10.1016/j.jallcom.2015.10.045

    Article  CAS  Google Scholar 

  59. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, Dielectric and impedance spectroscopy of (Ba, Sm)(Ti, Fe)O3 system in the low-medium frequency range. J. Mater. Sci.: Mater. Electron. 26, 6572–6584 (2015). https://doi.org/10.1007/s10854-015-3255-1

    Article  CAS  Google Scholar 

  60. M. Atif, M. Idrees, M. Nadeem, M. Siddique, M.W. Ashraf, Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e., Co1xMnxFe2O4 (0.0≤ x ≤ 0.4). RSC Adv. 6, 20876–20885 (2016). https://doi.org/10.1039/C5RA20621A

    Article  CAS  Google Scholar 

  61. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990). https://doi.org/10.1002/adma.19900020304

    Article  CAS  Google Scholar 

  62. P. Sateesh, J. Omprakash, G.S. Kumar, G. Prasad, Studies of phase transition and impedance behavior of Ba(Zr, Ti)O3 ceramics. J. Adv. Dielectr. 5, 1550002 (2015). https://doi.org/10.1142/S2010135X15500022

    Article  CAS  Google Scholar 

  63. M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J. Alloys Compd. 493, 553–560 (2010). https://doi.org/10.1016/j.jallcom.2009.12.154

    Article  CAS  Google Scholar 

  64. R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites. Bull. Mater. Sci. 23, 273–279 (2000). https://doi.org/10.1007/BF02720082

    Article  CAS  Google Scholar 

  65. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2002). https://doi.org/10.1103/PhysRevB.64.214408

    Article  CAS  Google Scholar 

  66. J.H. Kim, F.F. Fang, H.J. Choi, Y. Seo, Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology. Mater. Lett. 62, 2897–2899 (2008). https://doi.org/10.1016/j.matlet.2008.01.067

    Article  CAS  Google Scholar 

  67. J.A. Bas, J.A. Calero, M.J. Dougan, Sintered soft magnetic materials. Properties and applications. J. Magn. Magn. Mater. 254, 391–398 (2003). https://doi.org/10.1016/S0304-8853(02)00934-4

    Article  Google Scholar 

  68. S. Srinivas, J.Y. Li, Y.C. Zhou, A.K. Soh, The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99, 043905 (2006). https://doi.org/10.1063/1.2173035

    Article  CAS  Google Scholar 

  69. A. Broese, P.F. Van Groenon, A.L. Bongers, Stuyts, Magnetism, microstructure and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 3, 317–392 (1969). https://doi.org/10.1016/0025-5416(69)90042-1

    Article  Google Scholar 

  70. A. Kyono, S.A. Gramsch, Y. Nakamoto, M. Sakata, M. Kato, T. Tamura, T. Yamanaka, High-pressure behavior of cuprospinel CuFe2O4: Influence of the Jahn-Teller effect on the spinel structure. Am. Mineral. 100, 1752–1761 (2015). https://doi.org/10.2138/am-2015-5224

    Article  Google Scholar 

  71. G. Srinivasan, E.T. Rasmussen, A.A. Bush, K.E. Kamentsev, V.F. Meshcheryakov, Y.K. Fetisov, Structural and magnetoelectric properties of MFe2O4-PZT (M = Ni, Co) and Lax(Ca, Sr)1xMnO3-PZT multilayer composites. Appl. Phys. A 78, 721–728 (2004). https://doi.org/10.1007/s00339-002-1987-2

    Article  CAS  Google Scholar 

  72. S. Choudhury, Y.L. Li, C. Krill, L.Q. Chen, Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations. Acta Mater. 55, 1415–1426 (2007). https://doi.org/10.1016/j.actamat.2006.09.048

    Article  CAS  Google Scholar 

  73. R.A. Islam, S. Priya, Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3-Ni0.8Zn0.2Fe2O4 particulate composites. J. Mater. Sci. 43, 3560–3568 (2008). https://doi.org/10.1007/s10853-008-2562-9

    Article  CAS  Google Scholar 

  74. B.K. Bammannavar, G.N. Chavan, L.R. Naik, B.K. Chougule, Magnetic properties and magnetoelectric (ME) effect in ferroelectric rich Ni0.2Co0.8Fe2O4+PbZr0.8Ti0.2O3 ME composites. Mater. Chem. Phys. 117, 46–50 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.040

    Article  CAS  Google Scholar 

  75. C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994). https://doi.org/10.1103/PhysRevB.50.6082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Professor Caltun Ovidiu Florin, Alexandru Ioan Cuza University of Iasi, Romania for providing support for magnetic and ME coefficient measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish R. Tanna.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanna, A.R., Srinivasan, S.S. & Joshi, H.H. Enhancement in magnetoelectric properties of lead-free multiferroic composite through high-energy mechanical milling. J Mater Sci: Mater Electron 31, 9306–9320 (2020). https://doi.org/10.1007/s10854-020-03470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03470-z

Navigation