Skip to main content
Log in

Fabricating antimony sulfide Sb2S3 microbars using solvothermal synthesis: effect of the solvents used on the optical, structural, and morphological properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antimony trisulfide (Sb2S3) is a promising candidate for cell absorbers due to its appropriate band gap, abundant constituents, non-toxicity, simple composition, and long-term stability. In this study, highly oriented Sb2S3 microbars were prepared utilizing an easy, low-cost solvothermal approach. The effects of the solvents used on the morphological and the crystal structure and optical properties of the Sb2S3 films were inspected using X-ray powder direction (XRD), UV/Vis spectroscopy, and field emission scanning electron microscopy (FESEM). The XRD analysis demonstrated that the Sb2S3 crystals had an orthorhombic phase. The Sb2S3 nanorods/bars mostly grew along the (010) direction. Energy-dispersive X-ray analysis (EDX) peaks had an atomic ratio of 2:3 for Sb:S. UV/Vis absorption spectroscopy showed that the optical energy gap of the Sb2S3 microbars was 1.5 with ethylene glycol as the solvent. Aberration-corrected high-resolution transmission electron microscopy (HRTEM) micrographs demonstrated that the Sb2S3 was dendrite-like consisting of microbars with a standard a length of 8–15 µm and width of 250–400 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.J. Carey, J.P. Allen, D.O. Scanlon, G.W. Watson, The electronic structure of the antimony chalcogenide series: prospects for optoelectronic applications. J. Solid State Chem. 213, 116–125 (2014)

    Article  CAS  Google Scholar 

  2. R. Huang, J. Zhang, F. Wei, L. Shi, T. Kong, G. Cheng, Ultrahigh responsivity of ternary Sb–Bi–Se nanowire photodetectors. Adv. Funct. Mater. 24, 3581–3586 (2014)

    Article  CAS  Google Scholar 

  3. G. Chen, Y. Yu, K. Zheng, T. Ding, W. Wang, Y. Jiang, Q. Yang, Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible–NIR photodetectors. Small 11, 2848–2855 (2015)

    Article  CAS  Google Scholar 

  4. G. Chen, Y. Yu, K. Zheng, T. Ding, W. Wang, Y. Jiang, Q. Yang, Photodetectors: fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible–NIR photodetectors (Small 24/2015). Small 11, 2847–2847 (2015)

    Article  Google Scholar 

  5. J. Kong, H. Wei, D. Xia, P. Yu, High-performance Sb2S3/Sb anode materials for Li-ion batteries. Mater. Lett. 179, 114–117 (2016)

    Article  CAS  Google Scholar 

  6. V. Janošević, M. Mitrić, N. Bundaleski, Z. Rakočević, I.L. Validžić, High-efficiency Sb2S3‐based hybrid solar cell at low light intensity: cell made of synthesized Cu and Se‐doped Sb2S3. Prog. Photovoltaics Res. Appl. 24, 704–715 (2016)

    Article  Google Scholar 

  7. K. Mokurala, M. Nagaraju, S. Mallick, Sb 2 S 3 Nanorods based electrochemical catalyst for triiodide reduction in dye-sensitized solar cells. J. Electron. Mater. 46, 1926–1930 (2017)

    Article  CAS  Google Scholar 

  8. C. Yan, G. Chen, R. Jin, X. Zou, H. Xu, C. Lv, Well-defined Sb2S3 nanostructures: citric acid‐assisted synthesis, electrochemical hydrogen storage properties. Cryst. Res. Technol. 48, 566–573 (2013)

    Article  CAS  Google Scholar 

  9. R. Boughalmi, A. Boukhachem, M. Kahlaoui, H. Maghraoui, M. Amlouk, Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications. Mater. Sci. Semiconduct. Process. 26, 593–602 (2014)

    Article  CAS  Google Scholar 

  10. F. Aousgi, M. Kanzari, Structural and optical properties of amorphous Sb2S3 thin films deposited by vacuum thermal evaporation method. Curr. Appl. Phys. 13, 262–266 (2013)

    Article  Google Scholar 

  11. S. Horoz, O. Sahin, Synthesis, characterization and photovoltaic properties of Mn-doped Sb2S3 thin film. Mater. Sci. Poland 35, 861–867 (2017)

    Article  CAS  Google Scholar 

  12. A.M. Huerta-Flores, N.A. García-Gómez, M. Salomé, E.M. Sánchez, Comparative study of Sb2S3, Bi2S3 and In2S3 thin film deposition on TiO2 by successive ionic layer adsorption and reaction (SILAR) method. Mater. Sci. Semicond. Process. 37, 235–240 (2015)

    Article  CAS  Google Scholar 

  13. J.-Y. Hong, L.-Y. Lin, X. Li, Electrodeposition of Sb2S3 light absorbers on TiO2 nanorod array as photocatalyst for water oxidation. Thin Solid Films 651, 124–130 (2018)

    Article  CAS  Google Scholar 

  14. S. Ito, K. Tsujimoto, D.-C. Nguyen, K. Manabe, H. Nishino, Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int. J. Hydrog. Energy 38, 16749–16754 (2013)

    Article  CAS  Google Scholar 

  15. H. Hu, Z. Liu, B. Yang, M. Mo, Q. Li, W. Yu, Y. Qian, Solvothermal growth of Sb2S3 microcrystallites with novel morphologies. J. Cryst. Growth 262, 375–382 (2004)

    Article  CAS  Google Scholar 

  16. P.G. Sheikhiabadi, M. Salavati-Niasari, F. Davar, Hydrothermal synthesis and optical properties of antimony sulfide micro and nano-size with different morphologies. Mater. Lett. 71, 168–171 (2012)

    Article  CAS  Google Scholar 

  17. I.El Zawawi, A. Abdel-Moez, F. Terra, M. Mounir, Substrate temperature effect on the optical and electrical properties of antimony trisulfide thin films. Thin Solid Films 324, 300–304 (1998)

    Article  Google Scholar 

  18. R.A. Garcia, C.M. Avendaño, M. Pal, F.P. Delgado, N. Mathews, Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater. Sci. Semicond. Process. 44, 91–100 (2016)

    Article  Google Scholar 

  19. D. Salunkhe, S. Gargote, D. Dubal, W. Kim, B. Sankapal, Sb2S3 nanoparticles through solution chemistry on mesoporous TiO2 for solar cell application. Chem. Phys. Lett. 554, 150–154 (2012)

    Article  CAS  Google Scholar 

  20. H. Lei, T. Lin, X. Wang, S. Zhang, Q. Cheng, X. Chen, Z. Tan, J. Chen, A novel in situ hydrothermal preparation route for Sb2S3 and its solar cell application. Mater. Lett. 233, 90–93 (2018)

    Article  CAS  Google Scholar 

  21. U. Holzwarth, N. Gibson, The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  22. T.S. Senthil, N. Muthukumarasamy, M. Kang, Study of various Sb 2 S 3 nanostructures synthesized by simple solvothermal and hydrothermal methods. Mater. Charact. 95, 164–170 (2014)

    Article  CAS  Google Scholar 

  23. L. Chen, W. Zhu, Q. Han, X. Yang, L. Lu, X. Wang, Preparation of rod-like Sb2S3 dendrites processed in conventional hydrothermal. Mater. Lett. 63, 1258–1261 (2009)

    Article  CAS  Google Scholar 

  24. W. Tao, J. Wang, D. Wu, J. Chang, F. Wang, Z. Gao, F. Xu, K. Jiang, Solvothermal synthesis of antimony sulfide dendrites for electrochemical detection of dopamine. Dalton Trans. 42, 11411–11417 (2013)

    Article  CAS  Google Scholar 

  25. J. Ota, P. Roy, S.K. Srivastava, B.B. Nayak, A.K. Saxena, Morphology evolution of Sb2S3 under hydrothermal conditions: flowerlike structure to nanorods. Crystal Growth Des. 8, 2019–2023 (2008)

    Article  CAS  Google Scholar 

  26. S. Shaji, L.V. Garcia, S.L. Loredo, B. Krishnan, J. A. Aguilar Martinez, T. K. Das Roy, D. A. Avellaneda, Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl. Surf. Sci. 393, 369–376 (2017)

    Article  CAS  Google Scholar 

  27. M. Snure, A. Tiwari, Cu, BO 2: a p-type transparent oxide. Appl. Phys. Lett. 91, 092123 (2007)

    Article  Google Scholar 

  28. Y. Yu, R. Wang, Q. Chen, L.-M. Peng, High-quality ultralong Sb2Se3 and Sb2S3 nanoribbons on a large scale via a simple chemical route. J. Phys. Chem. B 110, 13415–13419 (2006)

    Article  CAS  Google Scholar 

  29. H. Hu, M. Mo, B. Yang, X. Zhang, Q. Li, W. Yu, Y. Qian, Solvothermal synthesis of Sb2S3 nanowires on a large scale. J. Cryst. Growth 258, 106–112 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. DG1440-21-130. The authors thank DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Mkawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almalki, R., Mkawi, E.M. & Al-Hadeethi, Y. Fabricating antimony sulfide Sb2S3 microbars using solvothermal synthesis: effect of the solvents used on the optical, structural, and morphological properties. J Mater Sci: Mater Electron 31, 9203–9211 (2020). https://doi.org/10.1007/s10854-020-03450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03450-3

Navigation