Skip to main content
Log in

Improved thermal stability and contact of antimony film by the interlayer HfO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The thermal stability was one of the primary obstacles hindering the development of phase-change memory. In this paper, Sb/HfO2 multilayer phase-change films were prepared by multilayer composite method. The transition process of Sb/HfO2 multilayer films from amorphous to crystalline state was studied by in-situ heating. With the decrease of the thickness of Sb layer, the crystallization temperature of Sb/HfO2 increased significantly. At the same time, the data retention temperature for 10 years increased from 14 °C of pure antimony to 147 °C of Sb/HfO2. The bandgap became wider and the surface became smoother. The existence of a large number of Sb microcrystals inhibited the phase transformation process. Compared with single-layer Sb film, Sb/HfO2 multilayer film had smaller volume change before and after phase transformation. The results showed that the addition of HfO2 interlayer significantly enhanced the amorphous thermal stability of Sb and improved the effective contact between the phase-change layer and the electrode. Sb/HfO2 multilayer film was a potential phase-change film with high stability and good reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Saito, A.V. Kolobov, P. Fons, K.V. Mitrofanov, K. Makino, J. Tominaga, J. Robertson, Appl. Phys. Lett. 114, 132102 (2019)

    Article  Google Scholar 

  2. L. Wang, Z.G. Liu, C.H. Yang, J. Wen, B.S. Xiong, Appl. Phys. Express 12, 055002 (2019)

    Article  CAS  Google Scholar 

  3. H.P. You, Y.F. Hu, T.S. Lai, Q.Q. Chou, X.Q. Zhu, H. Zou, IET Nanobiotechnol. 12, 1080–1083 (2018)

    Article  Google Scholar 

  4. K.J. Huang, Y.J. Ha, R. Zhao, A. Kumar, Y. Lian, IEEE T. Circuits-I. 61, 2605–2613 (2014)

    Google Scholar 

  5. Y.F. Hu, T.S. Lai, H. Zou, X.Q. Zhu, Mater. Res. Express 6, 025907 (2019)

    Article  Google Scholar 

  6. E. Palumbo, P. Zuliani, M. Borghi, R. Annunziata, Solid State Electron. 133, 38–44 (2017)

    Article  CAS  Google Scholar 

  7. M. Malvestuto, A. Caretta, B. Casarin, F. Cilento, M. Dell’Angela, D. Fausti, R. Calarco, B.J. Kooi, E. Varesi, J. Robertson, F. Parmigiani, Phys. Rev. B 94, 094310 (2016)

    Article  Google Scholar 

  8. J.G. Champlain, L.B. Ruppalt, A.C. Guyette, N. El-Hinnawy, P. Borodulin, E. Jones, R.M. Young, D. Nichols, J. Appl. Phys. 119, 244501 (2016)

    Article  Google Scholar 

  9. K.Y. Ding, K. Ren, F. Rao, Z.T. Song, L.C. Wu, B. Liu, S.L. Feng, Mater. Lett. 125, 143–146 (2014)

    Article  CAS  Google Scholar 

  10. Y.H. Zheng, Y. Cheng, M. Zhu, X.L. Ji, Q. Wang, S.N. Song, Z.T. Song, W.L. Liu, S.L. Feng, Appl. Phys. Lett. 108, 052107 (2016)

    Article  Google Scholar 

  11. Y.F. Hu, X.Q. Zhu, H. Zou, J.H. Zhang, Y. Li, J.Z. Xue, Y.X. Sui, W.H. Wu, S.N. Song, Z.T. Song, Appl. Phys. Lett. 108, 223103 (2016)

    Article  Google Scholar 

  12. X.L. Zhou, L.C. Wu, Z.T. Song, F. Rao, K. Ren, C. Peng, S.N. Song, B. Liu, L. Xu, S.L. Feng, Appl. Phys. Lett. 103, 072114 (2013)

    Article  Google Scholar 

  13. B.S. Sa, J. Zhou, Z.M. Sun, J. Tominaga, R. Ahuja, Phys. Rev. Lett. 109, 096802 (2012)

    Article  Google Scholar 

  14. P. Calka, M. Sowinska, T. Bertaud, D. Walczyk, J. Dabrowski, P. Zaumseil, C. Walczyk, A. Gloskovskii, X. Cartoixa, J. Sune, T. Schroeder, A.C.S. Appl, Mater. Inter. 6, 5056–5060 (2014)

    Article  CAS  Google Scholar 

  15. X.Q. Zhu, R. Zhang, Y.F. Hu, T.S. Lai, J.H. Zhang, H. Zou, Z.T. Song, Chinese Phys. Lett. 35, 056803 (2018)

    Article  Google Scholar 

  16. Y.F. Hu, M.C. Sun, S.N. Song, Z.T. Song, J.W. Zhai, Integr. Ferroelectr. 140, 8–15 (2012)

    Article  CAS  Google Scholar 

  17. Y. Zhu, Z. Zhang, S. Song, H. Xie, Z. Song, X. Li, L. Shen, L. Li, L. Wu, B. Liu, Mater. Res. Bull. 64, 333–336 (2015)

    Article  CAS  Google Scholar 

  18. Y.G. Lu, S.N. Song, Z.T. Song, B. Liu, J. Appl. Phys. 109, 064503 (2011)

    Article  Google Scholar 

  19. Y.G. Lu, M. Stegmaier, P. Nukala, M.A. Giambra, S. Ferrari, A. Busacca, W.H.P. Pernice, R. Agarwal, Nano Lett. 17, 150–155 (2017)

    Article  CAS  Google Scholar 

  20. H. Zou, X.Q. Zhu, Y.F. Hu, Y.X. Sui, W.H. Wu, J.Z. Xue, L. Zheng, Z.T. Song, CrystEngComm 18, 6365–6369 (2016)

    Article  CAS  Google Scholar 

  21. Z.F. He, S.Y. Chen, W.H. Wu, J.W. Zhai, S.N. Song, Z.T. Song, Appl. Phys. Express 10, 055504 (2017)

    Article  Google Scholar 

  22. X. Guo, Y.F. Hu, Q.Q. Chou, T.S. Lai, X.Q. Zhu, J. Mater. Sci-Mater. El. 29, 16172–16177 (2018)

    Article  CAS  Google Scholar 

  23. R. Zhang, Y.F. Hu, Q.Q. Chou, T.S. Lai, X.Q. Zhu, Micro. Nano Lett. 14, 379–383 (2019)

    Article  CAS  Google Scholar 

  24. F. Rao, Z.T. Song, Y. Cheng, M.J. Xia, K. Ren, L.C. Wu, B. Liu, S.L. Feng, Acta Mater. 60, 323–328 (2012)

    Article  CAS  Google Scholar 

  25. W.H. Wu, S.Y. Chen, J.W. Zhai, X.Y. Liu, T.S. Lai, S.N. Song, Z.T. Song, Appl. Phys. Lett. 110, 181906 (2017)

    Article  Google Scholar 

  26. Z.F. He, W.H. Wu, X.Y. Liu, J.W. Zhai, T.S. Lai, S.N. Song, Z.T. Song, Mater. Lett. 185, 399–402 (2016)

    Article  CAS  Google Scholar 

  27. R. Zhang, Y.F. Hu, Q.Q. Chou, T.S. Lai, X.Q. Zhu, J. Alloy. Compd. 798, 342–349 (2019)

    Article  CAS  Google Scholar 

  28. Y.F. Hu, R. Zhang, T. Lai, X.Q. Zhu, H. Zou, Z. Song, ECS J. Solid State Sc. 6, 4 (2017)

    Google Scholar 

  29. H. Zou, Y.F. Hu, X.Q. Zhu, Z.T. Song, RSC Adv. 7, 31110–31114 (2017)

    Article  Google Scholar 

  30. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wutting, Nat. Mater. 10, 202–208 (2011)

    Article  CAS  Google Scholar 

  31. H.P. You, Y.F. Hu, X.Q. Zhu, H. Zou, S.N. Song, Z.T. Song, Appl. Phys. A-Mater. 124, 168 (2018)

    Article  CAS  Google Scholar 

  32. C.Z. Wang, J.W. Zhai, S.N. Song, Z.T. Song, M.C. Sun, B. Shen, Electrochem. Solid. St. 14, H258–H260 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 11974008 and 11774438), Changzhou key laboratory of high technology research (CM20173002), and the open project of the institute of semiconductors, Chinese academy of sciences (klsm-1805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifeng Hu or Tianshu Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Hu, Y., Lai, T. et al. Improved thermal stability and contact of antimony film by the interlayer HfO2. J Mater Sci: Mater Electron 31, 8052–8058 (2020). https://doi.org/10.1007/s10854-020-03345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03345-3

Navigation