Skip to main content
Log in

Study on the modulation of sb phase change thin films and device properties by MoTe2 heterojunction layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, MoTe2/Sb heterojunction films were fabricated through alternating deposition of MoTe2 and Sb materials, and their properties were thoroughly examined. When compared to single-layer Sb films, the MoTe2/Sb heterojunction films exhibited a higher crystallization temperature (∼ 180.5 °C), an improved 10-year data retention temperature (∼ 97.41 °C), and a greater crystallization activation energy (∼ 2.81 ± 0.16 eV), indicating superior thermal stability. Near-infrared spectrophotometry revealed that the band gap of the crystalline MoTe2/Sb heterojunction films was wider than that of Sb films. Furthermore, X-ray diffractometer analysis demonstrated that the MoTe2 layer inhibited grain growth in Sb, resulting in smaller grain sizes. Atomic force microscopy observations revealed that the surface of MoTe2/Sb heterojunction films was smoother than that of single-layer Sb films. Phase change memory devices utilizing MoTe2/Sb heterojunction films demonstrated the reversible SET-RESET conversion across various pulse widths with lower operating power consumption compared to single-layer Sb films. These results demonstrate that the properties of Sb films can be effectively modulated through the MoTe2 heterojunction, yielding phase change materials with exceptional overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

I declare that all the data in this paper are available.

References

  1. W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, X. Shen, IEEE-CAA J. Automatica Sin. 5, 19–35 (2018)

    Article  Google Scholar 

  2. G. Du, Z. Liu, H. Lu, J. Comput. Appl. Math. 386, 113260 (2021)

    Article  Google Scholar 

  3. S.W. Fong, C.M. Neumann, H.S.P. Wong, IEEE Trans. Electron. Devices. 64, 4374–4385 (2017)

    Article  CAS  Google Scholar 

  4. W. Banerjee, Electronics-Switz 9, 1029 (2020)

    CAS  Google Scholar 

  5. S. Bertolazzi, P. Bondavalli, S. Roche, T. San, S.Y. Choi, L. Colombo, F. Bonaccorso, P. Samori, Adv. Mater. 31, e1806663 (2019)

    Article  PubMed  Google Scholar 

  6. W. Banerjee, A. Kashir, S. Kamba, Small. 18, e2107575 (2022)

    Article  PubMed  Google Scholar 

  7. B. Liu, T. Wei, J. Hu, W. Li, Y. Ling, Q. Liu, M. Cheng, Z. Song, Chin. Phys. B 30, 058504 (2021)

    Article  CAS  Google Scholar 

  8. S. Ghazi Sarwat, T.M. Philip, C.T. Chen, B. Kersting, R.L. Bruce, C.W. Cheng, N. Li, N. Saulnier, M. BrightSky, A. Sebastian, Adv. Funct. 31, 2106547 (2021)

    Article  CAS  Google Scholar 

  9. T. Ohta, IEEE Trans. Magn. 47, 613–619 (2011)

    Article  CAS  Google Scholar 

  10. J. Li, C. Lam, Sci. China Inf. Sci. 54, 1061–1072 (2011)

    Article  Google Scholar 

  11. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, J. Vac Sci. Technol. B 28, 223–262 (2010)

    Article  CAS  Google Scholar 

  12. M. Le Gallo, A. Sebastian, J. Phys. D: Appl. Phys. 53, 213002 (2020)

    Article  Google Scholar 

  13. H.H. Zhu, Y.G. Lu, L.Y. Cai, Opt. Express. 31, 18840–18850 (2023)

    Article  CAS  PubMed  Google Scholar 

  14. Y.T. Wu, L.Y. Cai, L.B. Miao, Z.Y. Wang, Y.G. Lu, Mater. Res. Bull. 161, 112152 (2023)

    Article  CAS  Google Scholar 

  15. S. Koliopoulou, P. Dimitrakis, D. Goustouridis, P. Normand, C. Pearson, M.C. Petty, H. Radamson, D. Tsoukalas, Microelectron. Eng. 83, 1563–1566 (2006)

    Article  CAS  Google Scholar 

  16. N. Yamada, Phys. Status Solidi B 249, 1837–1842 (2012)

    Article  CAS  Google Scholar 

  17. C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.H. Chen, H.C. Wang, T.Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Laser Photonics Rev. 10, 986–994 (2016)

    Article  CAS  Google Scholar 

  18. Y.J. Noori, L. Meng, A.H. Jaafar, W. Zhang, G.P. Kissling, Y. Han, N. Abdelazim, M. Alibouri, K. LeBlanc, N. Zhelev, R. Huang, R. Beanland, D.C. Smith, G. Reid, K. de Groot, P.N. Bartlett, ACS Appl. Electron. 3, 3610–3618 (2021)

    Article  CAS  Google Scholar 

  19. Z. Wang, H. Wang, X. Li, D. Wang, Q. Zhang, G. Chen, Z. Ren, Appl. Therm. Eng. 89, 204–208 (2015)

    Article  CAS  Google Scholar 

  20. M. Wang, M. Rais-Zadeh, JMM. 27, 013001 (2017)

    Google Scholar 

  21. R.K. Mishra, K. Verma, V. Mishra, B. Chaudhary, J. Energy Storage. 50, 104166 (2022)

    Article  Google Scholar 

  22. X. Feng, T. Wen, J. Zhai, T. Lai, C. Wang, S. Song, Z. Song, Appl. Surf. Sci. 316, 286–291 (2014)

    Article  CAS  Google Scholar 

  23. S. Sun, Y. Hu, Y. Xu, T. Lai, J. Electron. Mater. 49, 980–984 (2019)

    Article  Google Scholar 

  24. J. Chen, G. Wang, Y. Tang, H. Tian, J. Xu, X. Dai, H. Xu, J. Jia, W. Ho, M. Xie, ACS Nano. 11, 3282–3288 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. C. Kim, S. Issarapanacheewin, I. Moon, K.Y. Lee, C. Ra, S. Lee, Z. Yang, W.J. Yoo, Adv. Electron. 6, 1900964 (2020)

    Article  CAS  Google Scholar 

  26. D. Zakhidov, D.A. Rehn, E.J. Reed, A. Salleo, ACS Nano. 14, 2894–2903 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Sun, C. Yu, X. Zhu, H. Zou, Y. Hu, M. Pei, L. Zhai, Y. Sui, W. Wu, Z. Song, J. Phys. D: Appl. Phys. 52, 455107 (2019)

    Article  CAS  Google Scholar 

  28. Y. Hu, T. Lai, C. Di, X. Yan, J. Alloys Compd. 871, 159467 (2021)

    Article  CAS  Google Scholar 

  29. L. Zheng, X.-M. Yang, Y.-F. Hu, L.-J. Zhai, J.-Z. Xue, X.-Q. Zhu, Z.-T. Song, Chin. Phys. Lett. 35, 126801 (2018)

    Article  CAS  Google Scholar 

  30. Z. Zhang, S. Song, Z. Song, Y. Cheng, Y. Gu, L. Wu, B. Liu, S. Feng, J. Non-cryst. Solids 381, 54–57 (2013)

    Article  CAS  Google Scholar 

  31. X. Zeng, X. Zhu, Y. Hu, Z. Song, J. Electron. 51, 5594–5600 (2022)

    CAS  Google Scholar 

  32. S. Landi, I.R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C.J. Tavares, Solid State Commun. 341, 114573 (2022)

    Article  CAS  Google Scholar 

  33. X. Zhu, Y. Hu, H. Zou, J. Zhang, Y. Sun, W. Wu, L. Yuan, L. Zhai, S. Song, Z. Song, Scripta Mater. 121, 66–69 (2016)

    Article  CAS  Google Scholar 

  34. Y.-G. Yoo, D.-S. Yang, H.-J. Ryu, W.-S. Cheong, M.-C. Baek, Mat. Sci. Eng. A 449–451, 627–630 (2007)

    Article  Google Scholar 

  35. P. Nwaokafor, K.B. Okeoma, O.K. Echendu, A.C. Ohajianya, K.O. Egbo, Metallogr. Anal. 10, 727–735 (2021)

    Article  CAS  Google Scholar 

  36. H.H. Radamson, A. Hallen, Sychugov, A. Azarov, Analytical methods and instruments for micro- and nanomaterials, 1st edn. (Springer, Berlin, 2023)

    Book  Google Scholar 

  37. K.-J. Gan, D.-S. Liang, T. Ieice, IEEE Trans. Electron. 93, 514–520 (2010)

    Article  Google Scholar 

  38. J. Xu, Y. Hu, X. Zhu, Mater. Des. 208, 141–144 (2021)

    Google Scholar 

  39. J. Xu, Y. Hu, J. Mater. Res. Technol. 18, 4631–4640 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu.

Ethics declarations

Conflict of interest

I declare that there is no competing interest in this article.

Ethical approval

I swear to abide by the ethical standards of my research and papers.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y. Study on the modulation of sb phase change thin films and device properties by MoTe2 heterojunction layer. J Mater Sci: Mater Electron 35, 937 (2024). https://doi.org/10.1007/s10854-024-12689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12689-z

Navigation