Skip to main content
Log in

Use of redox additive to enhance the electrochemical performance of Co3O4/polyaniline/graphene composite-based supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesized ternary composite Co3O4/polyaniline/graphene delivered high capacitance of ~ 476 F g−1 at a current density of 2 A g−1, within the voltage window from − 0.8 to 0.8 V in three-electrode configuration. The symmetric device, fabricated using the composite material returned specific capacitance of ~ 37 F g−1 at a current density of 0.5 A g−1. Further, the effect of redox additive KI in electrolyte 1 M Na2SO4 was investigated in symmetric device configuration. The optimum results were obtained when 75 mmol KI was added with 1 M Na2SO4 electrolyte and capacitance increased more than two times, compared to the case while no redox additive was added in electrolyte and the maximum capacitance was found to be ~ 94 F g−1, at a current density 1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Masarapu, H.F. Zeng, K.H. Hung, B. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3, 2199–2206 (2009)

    CAS  Google Scholar 

  2. R. German, O. Briat, A. Sari, P. Venet, M. Ayadi, Y. Zitouni, J.M. Vinassa, Impact of high frequency current ripple on supercapacitors ageing through floating ageing tests. Microelectron. Reliab. 53, 1643–1647 (2013)

    Google Scholar 

  3. Z. Zeng, Y. Liu, W. Zhang, H. Chevva, J. Wei, Improved supercapacitor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field. J. Power Sources 358, 22–28 (2017)

    CAS  Google Scholar 

  4. P. Haldar, S. Biswas, V. Sharma, A. Chandra, Understanding the origin of magnetic field dependent specific capacitance in Mn3O4 nanoparticle based supercapacitors. J. Electrochem. Soc. 165, A3230–A3239 (2018)

    CAS  Google Scholar 

  5. K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012)

    CAS  Google Scholar 

  6. Q. Wang, J. Yan, Y. Wang, G. Ning, Z. Fan, T. Wei, J. Cheng, M. Zhang, X. Jing, Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon 52, 209–218 (2013)

    CAS  Google Scholar 

  7. V. Sharma, S. Biswas, B. Sundaram, P. Haldar, B. Dubey, A. Chandra, Electrode materials with highest surface area and specific capacitance cannot be the only deciding factor for applicability in energy storage devices: inference of combined life cycle assessment and electrochemical studies. ACS Sustain. Chem. Eng. 7, 5385–5392 (2019)

    CAS  Google Scholar 

  8. A.K. Thakur, R.B. Choudhary, High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2). Synth. Met. 220, 25–33 (2016)

    CAS  Google Scholar 

  9. Y. Gao, Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res. Lett. 12, 387 (2017)

    Google Scholar 

  10. X. Wang, D. Wu, X. Song, W. Du, X. Zhao, D. Zhang, Review on carbon/polyaniline hybrids: design and synthesis for supercapacitor. Molecules 24, 2263 (2019)

    CAS  Google Scholar 

  11. L. Fu, Q. Qu, R. Holze, V.V. Kondratiev, Y. Wu, Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds? J. Mater. Chem. A. 7, 14937–14970 (2019)

    CAS  Google Scholar 

  12. Y.-R. Zhu, P.-P. Peng, J.-Z. Wu, T.-F. Yi, Y. Xie, S. Luo, Co3O4@NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ionics 336, 110–119 (2019)

    CAS  Google Scholar 

  13. A.K. Thakur, A.B. Deshmukh, R.B. Choudhary, I. Karbhal, M. Majumder, M.V. Shelke, Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater. Sci. Eng. B. 223, 24–34 (2017)

    CAS  Google Scholar 

  14. G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, MnO2 Nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 4, 4824 (2014)

    Google Scholar 

  15. M. Kazazi, High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors. Solid State Ionics 336, 80–86 (2019)

    CAS  Google Scholar 

  16. X. Jiang, Y. Cao, P. Li, J. Wei, K. Wang, D. Wu, H. Zhu, Polyaniline/graphene/carbon fiber ternary composites as supercapacitor electrodes. Mater. Lett. 140, 43–47 (2015)

    CAS  Google Scholar 

  17. E.-C. Cho, C.-W. Chang-Jian, K.-C. Lee, J.-H. Huang, B.-C. Ho, R.-Z. Liu, Y.-S. Hsiao, Ternary composite based on homogeneous Ni(OH)2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor. Chem. Eng. J. 334, 2058–2067 (2018)

    CAS  Google Scholar 

  18. L. Yue, S. Zhang, H. Zhao, Y. Feng, M. Wang, L. An, X. Zhang, J. Mi, One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics 329, 15–24 (2019)

    CAS  Google Scholar 

  19. L. Wang, T. Wu, S. Du, M. Pei, W. Guo, S. Wei, High performance supercapacitors based on ternary graphene/Au/polyaniline (PANI) hierarchical nanocomposites. RSC Adv. 6, 1004–1011 (2016)

    CAS  Google Scholar 

  20. N.H.N. Azman, M.S. Mamat @ Mat Nazir, L.H. Ngee, Y. Sulaiman, Graphene-based ternary composites for supercapacitors. Int. J. Energy Res. 42, 2104–2116 (2018)

  21. J. Qi, D. Chen, W. Wang, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Ren, J. Liu, Y. Jin, Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 30, 9877–9887 (2019)

    CAS  Google Scholar 

  22. Z. Wang, H.Y. Yue, Z.M. Yu, F. Yao, X. Gao, E.H. Guan, H.J. Zhang, W.Q. Wang, S.S. Song, One-pot hydrothermal synthesis of MoSe2 nanosheets spheres-reduced graphene oxide composites and application for high-performance supercapacitor. J. Mater. Sci. Mater. Electron. 30, 8537–8545 (2019)

    CAS  Google Scholar 

  23. L. Tao, L. Shengjun, Z. Bowen, W. Bei, N. Dayong, C. Zeng, Y. Ying, W. Ning, Z. Weifeng, Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance. Nanoscale Res. Lett. 10, 208 (2015)

    Google Scholar 

  24. C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. Lou, Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 5, 7883–7887 (2012)

    CAS  Google Scholar 

  25. H. Cheng, Z.G. Lu, J.Q. Deng, C.Y. Chung, K. Zhang, Y.Y. Li, A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 3, 895–901 (2010)

    CAS  Google Scholar 

  26. X. Sun, Z. Jiang, C. Li, Y. Jiang, X. Sun, X. Tian, L. Luo, X. Hao, Z.-J. Jiang, Facile synthesis of Co3O4 with different morphologies loaded on amine modified graphene and their application in supercapacitors. J. Alloys Compd. 685, 507–517 (2016)

    CAS  Google Scholar 

  27. H. Chen, M. Yang, S. Tao, M. Ren, G. Chen, Facile synthesis of Co3O4 with different morphologies via oxidation kinetic control and its application in hydrogen peroxide decomposition. Cryst. Growth Des. 16, 6286–6293 (2016)

    CAS  Google Scholar 

  28. C. Yuan, L. Yang, L. Hou, L. Shen, F. Zhang, D. Li, X. Zhang, Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. J. Mater. Chem. 21, 18183–18185 (2011)

    CAS  Google Scholar 

  29. Y.Q. Zhang, L. Li, S.J. Shi, Q.Q. Xiong, X.Y. Zhao, X.L. Wang, C.D. Gu, J.P. Tu, Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode. J. Power Sources 256, 200–205 (2014)

    CAS  Google Scholar 

  30. B. Vidyadharan, R.A. Aziz, I.I. Misnon, G.M. Anil Kumar, J. Ismail, M.M. Yusoff, R. Jose, High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J. Power Sources 270, 526–535 (2014)

    CAS  Google Scholar 

  31. J. Sun, Y. Wang, Y. Zhang, C. Xu, H. Chen, Egg albumin-assisted hydrothermal synthesis of Co3O4 quasi-cubes as superior electrode material for supercapacitors with excellent performances. Nanoscale Res. Lett. 14, 340 (2019)

    Google Scholar 

  32. H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Devices 1, 225–255 (2016)

    Google Scholar 

  33. Y. Wang, S. Tang, S. Vongehr, J. AliSyed, X. Wang, X. Meng, High-Performance flexible solid-state carbon cloth supercapacitors based on highly processible N-graphene doped polyacrylic acid/polyaniline composites. Sci. Rep. 6, 12883 (2016)

    CAS  Google Scholar 

  34. Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015)

    CAS  Google Scholar 

  35. M. Notarianni, J. Liu, F. Mirri, M. Pasquali, N. Motta, Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector. Nanotechnology. 25, 435405 (2014)

    Google Scholar 

  36. P. Haldar, S. Biswas, V. Sharma, A. Chowdhury, A. Chandra, Mn3O4-polyaniline-graphene as distinctive composite for use in high-performance supercapacitors. Appl. Surf. Sci. 491, 171–179 (2019)

    CAS  Google Scholar 

  37. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    CAS  Google Scholar 

  38. N.R. Chodankar, D.P. Dubal, A.C. Lokhande, A.M. Patil, J.H. Kim, C.D. Lokhande, An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin films. Sci. Rep. 6, 39205 (2016)

    CAS  Google Scholar 

  39. A. Singh, A. Chandra, Enhancing specific energy and power in asymmetric supercapacitors—a synergetic strategy based on the use of redox additive electrolytes. Sci. Rep. 6, 25793 (2016)

    CAS  Google Scholar 

  40. D. Jain, J. Kanungo, S.K. Tripathi, Enhanced performance of ultracapacitors using redox additive-based electrolytes. Appl. Phys. A. 124, 397 (2018)

    Google Scholar 

  41. D. Xu, W. Hu, X.N. Sun, P. Cui, X.Y. Chen, Redox additives of Na2MoO4 and KI: synergistic effect and the improved capacitive performances for carbon-based supercapacitors. J. Power Sources. 341, 448–456 (2017)

    CAS  Google Scholar 

  42. Z. Khan, B. Senthilkumar, S. Lim, R. Shanker, Y. Kim, H. Ko, Redox-Additive-enhanced high capacitance supercapacitors based on Co2P2O7 nanosheets. Adv. Mater. Interfaces 4, 1700059 (2017)

    Google Scholar 

  43. B. Akinwolemiwa, C. Peng, G.Z. Chen, Redox electrolytes in supercapacitors. J. Electrochem. Soc. 162, A5054–A5059 (2015)

    CAS  Google Scholar 

  44. S.T. Senthilkumar, R.K. Selvan, J.S. Melo, Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J. Mater. Chem. A 1, 12386–12394 (2013)

    CAS  Google Scholar 

  45. X. Liu, Q. Long, C. Jiang, B. Zhan, C. Li, S. Liu, Q. Zhao, W. Huang, X. Dong, Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. Nanoscale. 5, 6525–6529 (2013)

    CAS  Google Scholar 

  46. X. Wang, L. Yu, X.-L. Wu, F. Yuan, Y.-G. Guo, Y. Ma, J. Yao, Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C 113, 15553–15558 (2009)

    CAS  Google Scholar 

  47. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559–2567 (2012)

    CAS  Google Scholar 

  48. B. Rajagopalan, S.H. Hur, J.S. Chung, Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Res. Lett. 10, 183 (2015)

    Google Scholar 

  49. Y. Yang, K. Shen, Y. Liu, Y. Tan, X. Zhao, J. Wu, X. Niu, F. Ran, Novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Lett. 9(1), 6 (2016)

    Google Scholar 

  50. S.S. Karade, P. Dwivedi, S. Majumder, B. Pandit, B.R. Sankapal, First report on a FeS-based 2 V operating flexible solid-state symmetric supercapacitor device. Sustain. Energy Fuels 1, 1366–1375 (2017)

    CAS  Google Scholar 

  51. H. Li, G. Zhang, R. Zhang, H. Luo, L. Wang, C. Hu, I. Samo, Y. Pang, Z. Chang, X. Sun, Scalable fabrication of hierarchically porous N-doped carbon electrode materials for high-performance aqueous symmetric supercapacitor. J. Mater. Sci. 53, 5194–5203 (2017)

    Google Scholar 

  52. G. Ma, Z. Zhang, H. Peng, K. Sun, F. Ran, Z. Lei, Facile preparation of nitrogen-doped porous carbon for high performance symmetric supercapacitor. J. Solid State Electrochem. 20, 1613–1623 (2016)

    CAS  Google Scholar 

  53. X.-J. Ma, W.-B. Zhang, L.-B. Kong, Y.-C. Luo, L. Kang, VO2: from negative electrode material to symmetric electrochemical capacitor. RSC Adv. 5, 97239–97247 (2015)

    CAS  Google Scholar 

  54. R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z. Sun, S.X. Dou, J.H. Kim, Y. Yamauchi, Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A. 2, 19848–19854 (2014)

    CAS  Google Scholar 

  55. C. Wan, Y. Jiao, J. Li, A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors. J. Mater. Chem. A. 5, 17267–17278 (2017)

    CAS  Google Scholar 

  56. A. GoljanianTabrizi, N. Arsalani, A. Mohammadi, H. Namazi, L. SalehGhadimi, I. Ahadzadeh, Facile synthesis of a MnFe2O4/rGO nanocomposite for an ultra-stable symmetric supercapacitor. New J. Chem. 41, 4974–4984 (2017)

    CAS  Google Scholar 

  57. K. Karthikeyan, D. Kalpana, S. Amaresh, Y.S. Lee, Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance. RSC Adv. 2, 12322–12328 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

Prasenjit Haldar (PH) acknowledges University Grants Commission (UGC), India for providing Senior Research Fellowship. Special thanks to Dr. Amreesh Chandra (Professor of Department of Physics, Indian Institute of Technology Kharagpur, India), for introducing PH to the field of supercapacitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Haldar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, P. Use of redox additive to enhance the electrochemical performance of Co3O4/polyaniline/graphene composite-based supercapacitors. J Mater Sci: Mater Electron 31, 7905–7915 (2020). https://doi.org/10.1007/s10854-020-03329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03329-3

Navigation