Skip to main content
Log in

Structural, thermal, dielectric and multiferroic investigations on LaFeO3 composite systems

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study focuses on developing multiferroic properties in the perovskite orthoferrite LaFeO3 (LFO) at room temperature. The effect of perovskite ferroelectric and spinel magnetic interface has been investigated on the ferroelectric and magnetic properties of LFO. The composite systems are prepared by solid-state reaction route, using BaTiO3 (BTO) as the perovskite ferroelectric phase and CoFe2O4 (CFO) as the magnetic phase. The phase purity of the samples is confirmed through X-ray diffraction and the Fourier transform infrared spectroscopy. The physical interaction of BTO and CFO with LFO is perceived from the peak broadening and shifting. Rietveld refinement confirms the single-phase orthorhombic formation of LaFeO3–CoFe2O4–BaTiO3 composites. The energy dispersive X-ray analysis reveals that the samples are without any impurity and the relative concentrations of constituent phases are close to the expected values. High-resolution transmission electron microscopy is utilized to determine the interplanar spacing and hence Bragg planes. Selected area electron diffraction (SAED) patterns reveal the polycrystalline nature of samples with a small local ordering. Specific heat variation against temperature depicts an anomaly at lower temperature around 130 °C that represents the transition of BaTiO3 from tetragonal ferroelectric to cubic paraelectric phase. The variation of dielectric constant with frequency is consistent with Maxwell–Wagner interfacial polarization model. The dielectric behavior of the composite systems reveals the frequency independent anomaly at the Curie temperature of BaTiO3, consistent with specific heat measurements. The simultaneous presence of ferroelectric and magnetic hysteresis loops confirms the multiferroism in the samples. The exchange bias effect is observed in all the samples and coercivity decreases with the increase in BaTiO3 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C. Schmitz-Antoniak, D. Schmitz, P. Borisov, F.M.F. de Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, W. Kleemann, H. Wende, Nat. Commun. 4, 2051 (2013)

    Google Scholar 

  2. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    CAS  Google Scholar 

  3. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005)

    CAS  Google Scholar 

  4. A. Scholl, J. Stöhr, J. Luning, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, F. Nolting, S. Anders, E.E. Fullerton, M.R. Scheinfein, H.A. Padmore, Science 287, 1014 (2000)

    CAS  Google Scholar 

  5. Y. Wang, J. Hu, Y. Lin, C. Nan, NPG Asia Mater. 2, 61 (2010)

    Google Scholar 

  6. J. Ma, J. Hu, Z. Li, C. Nan, Adv. Mater. 23, 1062 (2011)

    CAS  Google Scholar 

  7. C.N.R. Rao, A. Sundaresan, R. Saha, J. Phys. Chem. Lett. 3, 2237 (2012)

    CAS  Google Scholar 

  8. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    CAS  Google Scholar 

  9. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    CAS  Google Scholar 

  10. D.K. Pradhan, S. Kumari, R.K. Vasudevan, E. Strelcov, V.S. Puli, D.K. Pradhan, A. Kumar, J.M. Gregg, A.K. Pradhan, S.V. Kalinin, R.S. Katiyar, Sci. Rep. 8, 17381 (2018)

    Google Scholar 

  11. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900 (2010)

    CAS  Google Scholar 

  12. C. Murugesan, G. Chandrasekaran, RSC Adv. 5, 73714 (2015)

    CAS  Google Scholar 

  13. A. Manjeera, M. Vittal, V.R. Reddy, G. Prasad, G.S. Kumar, Ferroelectrics 519, 15 (2017)

    CAS  Google Scholar 

  14. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Mater. Lett. 64, 415 (2010)

    CAS  Google Scholar 

  15. S.K. Kundu, D.K. Rana, A. Banerjee, D. Das, S. Basu, Mater. Res. Express 6, 2053 (2019)

    Google Scholar 

  16. Acharya, S.A., Gaikwad, V.M.: in Proceedings of the 14th Asian Conference on Solid State Ionics (ACSSI 2014)(1AGSSEA), pp. 215–224. Research Publishing Services, Singapore (2014)

  17. V.M. Gaikwad, S.A. Acharya, RSC Adv. 5, 14366 (2015)

    CAS  Google Scholar 

  18. T. Sreenivasu, P. Tirupathi, K. Prabahar, B. Suryanarayana, K.C. Mouli, J. Adv. Phys. 6, 1 (2016)

    Google Scholar 

  19. A. Singh, R. Chatterjee, Appl. Phys. Lett. 93, 182908 (2008)

    Google Scholar 

  20. K. Peng, L. Fu, H. Yang, J. Ouyang, Sci. Rep. 6, 1 (2016)

    Google Scholar 

  21. M.G. Ranieri, R.A.C. Amoresi, M.A. Ramirez, J.A. Cortes, L.S.R. Rocha, C.C. Silva, A.Z. Simoes, J. Mater. Sci. Mater. Electron. 27, 9325 (2016)

    CAS  Google Scholar 

  22. W.C. Koehler, E.O. Wollan, J. Phys. Chem. Solids 2, 100 (1957)

    CAS  Google Scholar 

  23. R.L. White, J. Appl. Phys. 40, 1061 (1969)

    CAS  Google Scholar 

  24. S. Manzoor, S. Husain, Mater. Res. Express 5, 55009 (2018)

    Google Scholar 

  25. M. Popa, J.M.C. Moreno, J. Alloy. Compd. 509, 4108 (2011)

    CAS  Google Scholar 

  26. S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, N. Zarrin, Appl. Phys. A 125, 509 (2019)

    Google Scholar 

  27. K.C. Verma, M. Singh, R.K. Kotnala, N. Goyal, J. Magn. Magn. Mater. 469, 483 (2019)

    CAS  Google Scholar 

  28. M.K. Mahata, K. Kumar, V.K. Rai, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124, 285 (2014)

    CAS  Google Scholar 

  29. R.A. Young, The Rietveld Method International Union of Crystallogarphy Book Series (Oxford University Press, Oxford, 1991)

    Google Scholar 

  30. C. Shivakumara, Solid State Commun. 139, 165 (2006)

    CAS  Google Scholar 

  31. R.F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer, Boston, 2005)

    Google Scholar 

  32. H. Laysandra, D. Triyono, IOP Conf. Ser.: Mater. Sci. Eng. 188, 012002 (2017)

    Google Scholar 

  33. A. Somvanshi, S. Husain, W. Khan, J. Alloy. Compd. 778, 439 (2019)

    CAS  Google Scholar 

  34. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, W. Khan, J. Alloy. Compd. 806, 1250 (2019)

    CAS  Google Scholar 

  35. G. Shirane, H. Danner, R. Pepinsky, Phys. Rev. 105, 856 (1956)

    Google Scholar 

  36. S. Manzoor, S. Husain, J. Appl. Phys. 124, 065110 (2018)

    Google Scholar 

  37. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    CAS  Google Scholar 

  38. A. Jaiswal, R. Das, T. Maity, P. Poddar, J. Appl. Phys. 110, 124301 (2011)

    Google Scholar 

  39. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 085014 (2009)

    Google Scholar 

  40. S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, and Naima Zarrin. J. Mater. Sci.: Mater. Electron. 30, 19227 (2019)

    CAS  Google Scholar 

  41. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999)

    CAS  Google Scholar 

  42. V.S. Tiwari, N.S. And, D. Pandey, J. Phys.: Condens. Matter 7, 1441 (1995)

    CAS  Google Scholar 

  43. M.L. Kahn, Z.J. Zhang, Appl. Phys. Lett. 78, 3651 (2001)

    CAS  Google Scholar 

  44. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    CAS  Google Scholar 

  45. E.J.W. Verwey, F.D. Boer, J.H. Vsanten, J. Chem. Phys. 161, 1091 (1948)

    Google Scholar 

  46. A.K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  47. J.L. Ye, C.C. Wang, W. Ni, X.H. Sun, J. Alloy. Compd. 617, 850 (2014)

    CAS  Google Scholar 

  48. Y. Ma, X.M. Chen, Y.Q. Lin, J. Appl. Phys. 103, 124111 (2008)

    Google Scholar 

  49. V. Babic, C. Geers, I. Panas, RSC Adv. 8, 41255 (2018)

    CAS  Google Scholar 

  50. M.Y. Yang, K. Kamiya, B. Magyari-Köpe, M. Niwa, Y. Nishi, K. Shiraishi, Appl. Phys. Lett. 103, 093504 (2013)

    Google Scholar 

  51. L.J. Berchmans, R. Sindhu, S. Angappan, C.O. Augustin, Journal of Materials Proessing Technology 7, 301 (2008)

    Google Scholar 

  52. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B 70, 024107 (2004)

    Google Scholar 

  53. Y. Zhang, J. Roscow, R. Lewis, H. Khanbareh, V.Y. Topolov, M. Xie, C.R. Bowen, Acta Mater. 154, 100 (2018)

    CAS  Google Scholar 

  54. W. Chen, Z.H. Wang, W. Zhu, O.K. Tan, J. Phys. D Appl. Phys. 42, 075421 (2009)

    Google Scholar 

  55. Y. Li, Y. Yang, J. Yao, R. Viswan, Z. Wang, J. Li, D. Viehland, Appl. Phys. Lett. 101, 022905 (2012)

    Google Scholar 

  56. A.L. Dantas, G.O.G. Rebouças, A.S.W.T. Silva, A.S. Carriço, J. Appl. Phys. 97, 10K105 (2005)

    Google Scholar 

  57. H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, K. Zakeri, J. Phys. D Appl. Phys. 43, 245002 (2010)

    Google Scholar 

  58. T.M. Rearick, G.L. Catchen, J.M. Adams, Phys. Rev. B 48, 224 (1993)

    CAS  Google Scholar 

  59. G. Hearne, M. Pasternak, R. Taylor, P. Lacorre, Phys. Rev. B 51, 11495 (1995)

    CAS  Google Scholar 

  60. L. Kumar, P. Kumar, A. Narayan, M. Kar, Int. Nano Lett. 3, 8 (2013)

    Google Scholar 

  61. R. Rajagukguk, D.G. Shin, B.W. Lee, J. Magn. 16, 101 (2011)

    Google Scholar 

  62. M.M. Selvi, P. Manimuthu, K.S. Kumar, C. Venkateswaran, J. Magn. Magn. Mater. 369, 155 (2014)

    CAS  Google Scholar 

  63. R.V.K. Mangalam, N. Ray, U.V. Waghmare, A. Sundaresan, C.N.R. Rao, Solid State Commun. 149, 1 (2009)

    CAS  Google Scholar 

  64. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors S. Manzoor is grateful to Dr. Shalendra Kumar, Electronic Materials & Nanomagnetism Lab., Amity University, Gurgaon for providing PE characterization and CIF, Guwahati for VSM facilities. Authors also acknowledge the University Sophisticated Instrument Facility (USIF), AMU for SEM and TEM measurements. Dr. Mohd. Jane Alam, spectroscopy lab, Department of Physics, A.M.U. Aligarh is acknowledged for his help in optical characterizations. A. Somvanshi is thankful to DAE CSR Mumbai to provide financial support under project CRS-M-271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, S., Husain, S., Somvanshi, A. et al. Structural, thermal, dielectric and multiferroic investigations on LaFeO3 composite systems. J Mater Sci: Mater Electron 31, 7811–7830 (2020). https://doi.org/10.1007/s10854-020-03320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03320-y

Navigation