Skip to main content

Advertisement

Log in

Fabrication and characterization of Zn-ion-conducting solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work is aimed at developing the Zn-ion-conducting solid polymer electrolyte (SPE) films based on PVdF-HFP/Zn(Tf)2 complex system via solution casting method. The structural and morphological characteristics of the as-prepared films are elucidated by X-ray diffraction and scanning electron microscopy. Further, impedance spectroscopy and cyclic voltammetry are performed to investigate their electrical and electrochemical properties. The structural analysis confirms that the PVdF-HFP is semi-crystalline and its amorphous domain increases with the addition of Zn(Tf)2 salt. The impedance results reveal that the ionic conductivity of the electrolyte film is raised up to a maximum value of 2.44 × 10–5 S cm−1 at room temperature when the mass ratio of Zn(Tf)2:PVdF-HFP is 0.4 (named as PE/Zn-4). However, further loading of salt degrades the overall properties of the film. Hence, the PE/Zn-4 system is regarded to be the optimal composition for efficient SPE films. Additionally, the PE/Zn-4 electrolyte exhibits sound thermal stability and mechanical properties. The electrochemical stability window of the PE/Zn-4 system is evaluated as approximately 3.45 V, being acceptable for energy storage applications. In addition, the present polymer electrolyte may well suppress the formation of Zn dendrites on Zn electrodes. Conclusively, the development of high-performance SPEs could be potentially very useful for the next-generation Zn-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.W. Sun, J. Liu, Y.D. Gong et al., Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017)

    CAS  Google Scholar 

  2. Y.B. Li, J. Fu, C. Zhong et al., Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater. 9, 47654 (2019)

    Google Scholar 

  3. S. Ahmad, Polymer electrolytes: characteristics and peculiarities. Ionics 15, 309–321 (2009)

    CAS  Google Scholar 

  4. W.H. Meyer, Polymer electrolytes for lithium-ion batteries. Adv Mater. 10, 439–448 (1998)

    CAS  Google Scholar 

  5. S. Ibrahim, M.M. Yassin, R. Ahmad et al., Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17, 399–405 (2011)

    CAS  Google Scholar 

  6. D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14, 589–589 (1973)

    CAS  Google Scholar 

  7. M. Armand, The history of polymer electrolytes. Solid State Ionics 69, 309–319 (1994)

    CAS  Google Scholar 

  8. Z.G. Xue, D. He, X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015)

    CAS  Google Scholar 

  9. K.S. Ngai, S. Ramesh, K. Ramesh et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016)

    CAS  Google Scholar 

  10. J.W. Tang, R. Muchakayala, S.H. Song et al., Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polym. Test. 50, 247–254 (2016)

    CAS  Google Scholar 

  11. N.S. Mohamed, A.K. Arof, Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J. Power Sources 132, 229–234 (2004)

    CAS  Google Scholar 

  12. N.G. Mccrum, A Study of Internal friction in copolymers of tetrafluoroethylene and hexafluoropropylene. Makromolekul Chem. 34, 50–66 (1959)

    CAS  Google Scholar 

  13. S. Abbrent, J. Plestil, D. Hlavata et al., Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407–1416 (2001)

    CAS  Google Scholar 

  14. K. Kordesch, M. Weissenbacher, Rechargeable alkaline manganese-dioxide zinc Batteries. J. Power Sources 51, 61–78 (1994)

    CAS  Google Scholar 

  15. J. Ming, J. Guo, C. Xia et al., Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019)

    Google Scholar 

  16. C.J. Xu, B.H. Li, H.D. Du et al., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012)

    CAS  Google Scholar 

  17. J.J. Wang, J.G. Wang, H.Y. Liu et al., Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources 438, 226951 (2019)

    CAS  Google Scholar 

  18. G.Z. Fang, J. Zhou, A.Q. Pan et al., Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018)

    CAS  Google Scholar 

  19. J.J. Wang, J.G. Wang, H.Y. Liu et al., Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A 7, 13727–13735 (2019)

    CAS  Google Scholar 

  20. M.J.C. Plancha, C.M. Rangel, C.A.C. Sequeira, Pseudo-equilibrium phase diagrams for PEO-Zn salts-based electrolytes. Solid State Ionics 116, 293–300 (1999)

    CAS  Google Scholar 

  21. T.M.A. Abrantes, L.J. Alcacer, C.A.C. Sequeira, Thin-film solid-state polymer electrolytes containing silver, copper and zinc ions as charge-carriers. Solid State Ionics 18–9, 315–320 (1986)

    Google Scholar 

  22. R. Huq, G.C. Farrington, Ion-transport in divalent-cation complexes of poly(ethylene oxide). Solid State Ionics 28, 990–993 (1988)

    Google Scholar 

  23. S. Karan, T.B. Sahu, M. Sahu et al., Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)(2)]. Ionics 23, 2721–2726 (2017)

    CAS  Google Scholar 

  24. H. Ye, J.J. Xu, Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends. J. Power Sources 165, 500–508 (2007)

    CAS  Google Scholar 

  25. H.F. Li, C.P. Han, Y. Huang et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951 (2018)

    CAS  Google Scholar 

  26. W. Li, K.L. Wang, S.J. Cheng et al., An ultrastable presodiated titanium disulfide anode for aqueous "rocking-chair" zinc ion battery. Adv. Energy Mater. 9, 1900993 (2019)

    Google Scholar 

  27. A. Mitha, A.Z. Yazdi, M. Ahmed et al., Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chemelectrochem 5, 2409–2418 (2018)

    CAS  Google Scholar 

  28. H.F. Li, C.J. Xu, C.P. Han et al., Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J. Electrochem. Soc. 162, A1439–A1444 (2015)

    CAS  Google Scholar 

  29. W. Li, K.L. Wang, S.J. Cheng et al., A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018)

    Google Scholar 

  30. W. Li, K.L. Wang, M. Zhou et al., Advanced low-cost, high-voltage, long-life Aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interface 10, 22059–22066 (2018)

    CAS  Google Scholar 

  31. L.T. Kang, M.W. Cui, F.Y. Jiang et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018)

    Google Scholar 

  32. J.H. Cao, B.K. Zhu, Y.Y. Xu, Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 281, 446–453 (2006)

    CAS  Google Scholar 

  33. L.Z. Long, S.J. Wang, M. Xiao et al., Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016)

    CAS  Google Scholar 

  34. S.H. Song, J.W. Wang, J.W. Tang et al., Preparation, properties, and Li-ion battery application of EC plus PC-modified PVdF-HFP gel polymer electrolyte films. Ionics 23, 3365–3375 (2017)

    CAS  Google Scholar 

  35. S. Ramesh, S.C. Lu, A simple P(VdF-HFP)-LiTf system yielding highly ionic conducting and thermally stable solid polymer electrolytes. J. Mol. Liq. 177, 73–77 (2013)

    CAS  Google Scholar 

  36. J.W. Wang, Z.J. Zhao, S.H. Song et al., High performance poly(vinyl alcohol)-based Li-ion conducting gel polymer electrolyte films for electric double-layer capacitors. Polymers 10, 1179 (2018)

    CAS  Google Scholar 

  37. B. Liang, S.Q. Tang, Q.B. Jiang et al., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim. Acta 169, 334–341 (2015)

    CAS  Google Scholar 

  38. M. Ravi, S.H. Song, K.M. Gu et al., Electrical properties of biodegradable poly(epsilon-caprolactone): lithium thiocyanate complexed polymer electrolyte films. Mater. Sci. Eng. B 195, 74–83 (2015)

    CAS  Google Scholar 

  39. A.S.A. Khiar, R. Puteh, A.K. Arof, Conductivity studies of a chitosan-based polymer electrolyte. Phys. B 373, 23–27 (2006)

    CAS  Google Scholar 

  40. S.P.C. Murali, A.S. Samuel, Zinc ion conducting blended polymer electrolytes based on room-temperature ionic liquid and ceramic filler. J. Appl. Polym. Sci. 136, 47654 (2019)

    Google Scholar 

  41. S. Gross, D. Camozzo, V. Di Noto et al., PMMA: a key macromolecular component for dielectric low-kappa hybrid inorganic-organic polymer films. Eur. Polym. J. 43, 673–696 (2007)

    CAS  Google Scholar 

  42. D. Ravinder, A.V.R. Reddy, G.R. Mohan, Abnormal dielectric behaviour in polycrystalline zinc-substituted manganese ferrites at high frequencies. Mater. Lett. 52, 259–265 (2002)

    CAS  Google Scholar 

  43. P.B. Bhargav, V.M. Mohan, A.K. Sharma et al., Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications. Curr. Appl. Phys. 9, 165–171 (2009)

    Google Scholar 

  44. N. Kulshrestha, B. Chatterjee, P.N. Gupta, Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate. Mater. Sci. Eng. B 184, 49–57 (2014)

    CAS  Google Scholar 

  45. J.W. Wang, S.H. Song, S. Gao et al., Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: Preparation, structural, electrical and electrochemical properties. Polym. Test. 62, 278–286 (2017)

    CAS  Google Scholar 

  46. R. Muchakayala, S.H. Song, S. Gao et al., Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym. Test. 58, 116–125 (2017)

    CAS  Google Scholar 

  47. C.Y. Yang, M.Q. Sun, X. Wang et al., A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@pi-conjugated polymer film electrodes. ACS Sustain. Chem. Eng. 3, 2067–2076 (2015)

    CAS  Google Scholar 

  48. M. Ravi, S.H. Song, J.W. Wang et al., Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J. Mater. Sci. 27, 1370–1377 (2016)

    CAS  Google Scholar 

  49. R. Rathika, O. Padmaraj, S.A. Suthanthiraraj, Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics 24, 243–255 (2018)

    CAS  Google Scholar 

  50. Y.A.K. Salman, O.G. Abdullah, R.R. Hanna et al., Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate. Int. J. Electrochem. Sci. 13, 3185–3199 (2018)

    CAS  Google Scholar 

  51. H.K. Koduru, L. Marino, F. Scarpelli et al., Structural and dielectric properties of NaIO4-complexed PEO/PVP blended solid polymer electrolytes. Curr. Appl. Phys. 17, 1518–1531 (2017)

    Google Scholar 

  52. A. Arya, Md Sadiq, A.L. Sharma, Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym. Bull. 76, 5149–5172 (2018)

    Google Scholar 

  53. R. Nadirnicherla, R. Kalla, R. Muchakayala et al., Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278, 260–267 (2015)

    Google Scholar 

  54. J.W. Wang, S.H. Song, R. Muchakayala et al., Structural, electrical, and electrochemical properties of PVA-based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23, 1759–1769 (2017)

    CAS  Google Scholar 

  55. M. Ravi, S.H. Song, K.M. Gu et al., Effect of lithium thiocyanate addition on the structural and electrical properties of biodegradable poly(epsilon-caprolactone) polymer films. Ionics 21, 2171–2183 (2015)

    CAS  Google Scholar 

  56. G.P. Pandey, S.A. Hashmi, Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J. Power Sources 187, 627–634 (2009)

    CAS  Google Scholar 

  57. X. Zhang, S. Wang, C.J. Xue et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors J. Liu and Z. Khanam share the first co-authorship. The authors appreciate Miss J. Wang for her valuable advice on experimental design. Many thanks to Mr. S. Gao and Miss M. Huang for their technical support. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenhua Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Khanam, Z., Muchakayala, R. et al. Fabrication and characterization of Zn-ion-conducting solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system. J Mater Sci: Mater Electron 31, 6160–6173 (2020). https://doi.org/10.1007/s10854-020-03169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03169-1

Navigation