Skip to main content
Log in

Novel nanocomposite decoy flare based on super-thermite and graphite particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphite has attracted scientific interest due to its exceptional physical and chemical properties. On combustion, graphite particles offer high emissivity as a black body; therefore, it can find wide application in advanced decoy flares. Thermite particles (metal oxides/metal) can offer a high reaction temperature that is required to stimulate emitting species. In this study, graphite particles were employed with super-thermite Fe2O3 NPs. Novel Mg–Al bimetal alloy was employed as a reactive metal fuel; Viton A (fluorocarbon polymer) was employed as an energetic binder. Multi-component nanocomposite flares were developed via granulation with subsequent pressing. The thermal signature was measured using the IR spectrometer. Nanocomposite flares based on 6 wt% graphite and 2% Fe2O3 NPs demonstrated superior spectral intensity. This flare formulation offered an increase in average intensity by 248% to reference formulation. It offered the highest relative intensity value θ of 0.54. Graphite, as an allotrope of carbon, acts as an excellent source of carbonaceous materials that can strengthen incandescence emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.-C. Koch, Pyrotechnic countermeasures: II. Advanced aerial infrared countermeasures. Propellants Explos. Pyrotech. 31, 3–19 (2006)

    CAS  Google Scholar 

  2. E.-C. Koch, Metal-Fluorocarbon Based Energetic Materials (Wiley-VCH, Weinheim, 2012)

    Google Scholar 

  3. J. Andreotti, A. Hirschman, Infrared decoy method using polydimethylsiloxane fuel. Google Patents. https://patents.google.com/patent/US5343794A/en, 1994

  4. S. Erwin, Anti-missile program for airliners on a Fast Track ‘Smart’ Flares being designed to defeat heat-seeking missiles, in National Defense, pp. 14–16. https://www.nationaldefensemagazine.org/article.cfm?Id=1281, 2003

  5. T.M. Klapotke, C.M. Rienacker, Drophammer test investigations on some inorganic and organic azides. Propellants Explos. Pyrotech. 26, 43–47 (2001)

    CAS  Google Scholar 

  6. E.C. Koch, A. Hahma, V. Weiser, E. Roth, S. Knapp, Metal-fluorocarbon pyrolants. XIII: high performance infrared decoy flare compositions based on MgB2 and Mg2Si and Polytetrafluoroethylene/Viton®. Propellants Explos. Pyrotech. 37, 432–438 (2012)

    CAS  Google Scholar 

  7. V. Weiser, A. Blanc, L. Deimling, W. Eckl, N. Eisenreich, S. Kelzenberg et al., Pyroorganic flares—a new approach for aircraft protection, in Europyro 2007–34th International Pyrotechnics Seminar, vol. 1, pp. 8–11, 2007

  8. M. Comet, V. Pichot, B. Siegert, F. Schnell, F. Ciszek, D. Spitzer, Phosphorus-based nanothermites: a new generation of energetic materials. J. Phys. Chem. Solids 71, 64–68 (2010)

    CAS  Google Scholar 

  9. L. Klusáček, P. Navratil, The use and application of red-phosphorous pyrotechnic composition for camouflage in the infrared region of radiation. Propellants Explos. Pyrotech. 22, 74–77 (1997)

    Google Scholar 

  10. E.C. Koch, S. Cudziło, Safer pyrotechnic obscurants based on phosphorus (V) nitride. Angew. Chem. Int. Ed. 55, 15439–15442 (2016)

    CAS  Google Scholar 

  11. E.-C. Koch, A. Dochnahl, Pyrotechnic active mass for producing an aerosol highly emissive in the infrared spectrum and impenetrable in the visible spectrum. Google Patents. https://patents.google.com/patent/US6581520B1/en, 2003.

  12. N. Wardecki, S. Lauer, K. Hieke, Camouflage and decoy munitions for protecting objects against guided missiles. Google Patents. https://patents.google.com/patent/US20090301336A1/en, 2006.

  13. E.C. Koch, A. Hahma, Metal-fluorocarbon pyrolants. XIV: high density-high performance decoy flare compositions based on ytterbium/polytetrafluoroethylene/Viton®. Z. Anorg. Allg. Chem. 638, 721–724 (2012)

    CAS  Google Scholar 

  14. E.-C. Koch, Pyrotechnic composition for producing IR-radiation. Google Patents. https://patents.google.com/patent/US6635130B2/en, 2009.

  15. E.C. Koch, 2006–2008 Annual review on aerial infrared decoy flares. Propellants Explos. Pyrotech. 34, 6–12 (2009)

    CAS  Google Scholar 

  16. E.C. Koch, Metal–fluorocarbon pyrolants: X. Influence of ferric oxide/silicon additive on burn rate and radiometric performance of magnesium/Teflon/Viton® (MTV). Propellants Explos Pyrotech 34, 472–474 (2009)

    CAS  Google Scholar 

  17. E. Koch, Metal-fluorocarbon pyrolants: VIII. Behaviour of burn rate and radiometric performance of two magnesium/Teflon/Viton (MTV) formulations upon addition of graphite. J. Pyrotech. 27, 38 (2008)

    CAS  Google Scholar 

  18. M.P. Nadler, Pyrotechnic pellet decoy method. Google Patents. https://patents.google.com/patent/US6675716B1/en, 2004.

  19. M. Comet, C. Martin, F. Schnell, D. Spitzer, Nanothermite foams: from nanopowder to object. Chem. Eng. J. 316, 807–812 (2017)

    CAS  Google Scholar 

  20. S. Elbasuney, A. Elsaidy, M. Kassem, H. Tantawy, Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28, 1718–1727 (2018)

    CAS  Google Scholar 

  21. S. Elbasuney, A. Elsaidy, M. Kassem, H. Tantawy, R. Sadek, A. Fahd et al., Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28, 2231–2240 (2018)

    CAS  Google Scholar 

  22. J.A. Conkling, C. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory (CRC Press, Boca Raton, 2010)

    Google Scholar 

  23. E.C. Koch, Metal–fluorocarbon pyrolants: X. Influence of ferric oxide/silicon additive on burn rate and radiometric performance of magnesium/Teflon/Viton® (MTV). Propellants Explos. Pyrotech. 34, 472–474 (2009)

    CAS  Google Scholar 

  24. V.E. Zarko, A.A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application (Elsevier, Cambridge, 2016)

    Google Scholar 

  25. C. Wei, Q. Chen, C. Cheng, R. Liu, Q. Zhang, L. Zhang, Mesoporous nickel cobalt manganese sulfide yolk–shell hollow spheres for high-performance electrochemical energy storage. Inorg. Chem. Front. 6, 1851–1860 (2019)

    CAS  Google Scholar 

  26. C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng et al., Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl. Surf. Sci. 453, 288–296 (2018)

    CAS  Google Scholar 

  27. C. Wei, Q. Ru, X. Kang, H. Hou, C. Cheng, D. Zhang, Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage. Appl. Surf. Sci. 435, 993–1001 (2018)

    CAS  Google Scholar 

  28. C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui et al., Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5, 3126–3134 (2018)

    CAS  Google Scholar 

  29. A. Bouvy, A. Opstaele (eds.), Waterbrone Coating and Additives (Royal Chemical Society, London, 1995), pp. 180–189

    Google Scholar 

  30. S. Voyutsky (ed.), Colloid Chemistry (Mir Publishers, Moscow, 1978)

    Google Scholar 

  31. R.J. Hunter (ed.), Zeta Potential in Colloid Science (Academic Press, New York, 1981)

    Google Scholar 

  32. S. Elbasuney, M.G. Zaky, M. Radwan, S.F. Mostafa, Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    CAS  Google Scholar 

  33. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    CAS  Google Scholar 

  34. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    CAS  Google Scholar 

  35. A.N. Popova, Crystallographic analysis of graphite by X-ray diffraction. Coke Chem. 60, 361–365 (2017)

    Google Scholar 

  36. Y. Mizutani, E. Ihara, T. Abe, M. Asano, T. Harada, Z. Ogumi et al., Preparation of alkali metal graphite intercalation compounds in organic solvents. J. Phys. Chem. Solids 57, 799–803 (1996)

    CAS  Google Scholar 

  37. XRD and Raman studies, M. J. I, V. M, C. P, and B. N, Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation. Diamond Relat. Mater. 88, 129–136 (2018)

    Google Scholar 

  38. G. Sun, X. Li, Y. Qu, X. Wang, H. Yan, Y. Zhang, Preparation and characterization of graphite nanosheets from detonation technique. Mater. Lett. 62, 703–706 (2008)

    CAS  Google Scholar 

  39. M.S. Asl, B. Nayebi, A. Motallebzadeh, M. Shokouhimehr, Nanoindentation and nanostructural characterization of ZrB2–SiC composite doped with graphite nano-flakes. Composites Part B Eng. 175, 107153 (2019)

    Google Scholar 

  40. K. Yoshida, Y. Sugawara, M. Saitoh, K. Matsumoto, R. Hagiwara, Y. Matsuo et al., Microscopic characterization of the C–F bonds in fluorine–graphite intercalation compounds. J. Power Sources 445, 227320 (2020)

    CAS  Google Scholar 

  41. P. Rzeczkowski, B. Krause, P. Pötschke, Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers 11, 462 (2019)

    CAS  Google Scholar 

  42. K.K. Alaneme, A.V. Fajemisin, N.B. Maledi, Development of aluminium-based composites reinforced with steel and graphite particles: structural, mechanical and wear characterization. J. Mater. Res. Technol. 8, 670–682 (2019)

    CAS  Google Scholar 

  43. E. Lorenzo-Bonet, M. Hernandez-Rodriguez, O. Perez-Acosta, M. De la Garza-Ramos, G. Contreras-Hernandez, A. Juarez-Hernandez, Characterization and tribological analysis of graphite/ultrahigh molecular weight polyethylene nanocomposite films. Wear 426, 195–203 (2019)

    Google Scholar 

  44. V.C. Karade, S.B. Parit, V.V. Dawkar, R.S. Devan, R.J. Choudhary, V.V. Kedge et al., A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it's In vitro hyperthermia application. Heliyon 5, e02044 (2019)

    CAS  Google Scholar 

  45. D.E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T.D. Mekuria, A.H. Shah, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 12, 1253–1261 (2019)

    Google Scholar 

  46. M. Sharma, α-Fe2O3 preparation by sol-gel method, pp. 1–16, 2017, https://bragitoff.com.

  47. T. Liang, X. Guo, B. Yuan, S. Kong, H. Huang, D. Fu et al., Design of functionalized α-Fe2O3 (III) films with long-term anti-wetting properties. Ceram. Int. 46(5), 6129–6135 (2020)

    Google Scholar 

  48. M. Tadic, M. Panjan, B.V. Tadic, J. Lazovic, V. Damnjanovic, M. Kopani et al., Magnetic properties of hematite (α-Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. J. Electr. Eng. 70, 71–76 (2019)

    Google Scholar 

  49. Q.Z. Zeng, S.Y. Ma, W.X. Jin, H.M. Yang, H. Chen, Q. Ge et al., Hydrothermal synthesis of monodisperse α-Fe2O3 hollow microspheroids and their high gas-sensing properties. J. Alloys Compd. 705, 427–437 (2017)

    CAS  Google Scholar 

  50. A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    CAS  Google Scholar 

  51. M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy et al., Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1–x)Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Google Scholar 

  52. B. Coffey, D.R. Schropp Jr., K.C. Kwiatkowski, Solid-state thermite composition based heating device. Google Patents. https://patents.google.com/patent/US8864924B2/en, 2014.

  53. M. Sjöberg, J.E. Dec, Smoothing HCCI heat-release rates using partial fuel stratification with two-stage ignition fuels. J. Engines 115(3), 318–334 (2006)

    Google Scholar 

  54. J.P. Longwell, M.A. Weiss, High temperature reaction rates in hydrocarbon combustion. Ind. Eng. Chem. 47, 1634–1643 (1955)

    CAS  Google Scholar 

  55. L. Allamandola, A. Tielens, J. Barker, Interstellar polycyclic aromatic hydrocarbons—the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. Ser. 71, 733–775 (1989)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Elmotaz, A.A., Sadek, M.A. et al. Novel nanocomposite decoy flare based on super-thermite and graphite particles. J Mater Sci: Mater Electron 31, 6130–6139 (2020). https://doi.org/10.1007/s10854-020-03166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03166-4

Navigation