Skip to main content
Log in

Multi-component nanocomposite infrared flare with superior infrared signature via synergism of nanothermite and reduced graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Infrared-guided missiles caused 90% aircraft damage. Infrared decoy flares are effective counter measure against infrared missiles. Decoy flare thermal signature depends mainly on black body emission of carbonaceous combustion products. Thermite particles can offer substantial heat output to promote black body emission. Reduced graphene oxide (RGO) is a promising material for advanced infrared decoy flares. RGO could act as ideal black-body emitter with superior thermal properties and high interfacial surface area. This study is dedicated to investigate novel synergism between Fe2O3 and RGO; Fe2O3 NPs of 3.56 nm were fabricated using hydrothermal synthesis technique. RGO nano-sheets of 10 µm dimensions and 10 nm thickness were developed via the reduction of graphene oxide, developed by Hummer̓ method. Complete reduction of GO to RGO was confirmed by Raman spectroscopy. Amorphous nano-sheets structure was observed using TEM; XRD diffractogram demonstrated tiny characteristic broad peak for amorphous RGO. Decoy flare formulation based on Fe2O3, RGO, reactive metal fuel (Mg), and fluorocarbon polymer (teflon) were developed. Thermal signature was evaluated using Arc-Optics IR spectrometer (1–6 µm). Multi-component MTV nanocomposite flare based on 6 wt % RGO and 2 wt % Fe2O3 demonstrated superior spectral and radiometric performance. It offered an increase in average intensity by 130% to reference MTV formulation; additionally it offered superior relative intensity Ɵ value of 0.76. While RGO could act as novel black body emitter; thermite reaction between Fe2O3 NPs and surplus magnesium fuel could provide substantial heat output; that could promote RGO black body emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.-C. Koch, Pyrotechnic countermeasures: II. Advanced aerial infrared countermeasures. Propellants Explos. Pyrotech. 31(1), 3–19 (2006)

    CAS  Google Scholar 

  2. E.-C. Koch, Metal-Fluorocarbon Based Energetic Materials (Wiley, New York, 2012)

    Google Scholar 

  3. E.C. Koch, Pyrotechnic countermeasures. Propellants Explos. Pyrotech. 31(1), 3–19 (2006)

    CAS  Google Scholar 

  4. K. Pal, Transparent Conducting Films (2019).

  5. C.W. Wong et al., Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities. J. Clust. Sci. 31(2), 367–389 (2020)

    CAS  Google Scholar 

  6. V. Singh et al., Graphene based materials. Prog. Mater. Sci. 56(8), 1178–1271 (2011)

    CAS  Google Scholar 

  7. K. Pal, Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications (CRC Press, Boca Rtaon, 2019)

    Google Scholar 

  8. E.C. Koch, 2006–2008 Annual review on aerial infrared decoy flares. Propellants Explos. Pyrotech. 34(1), 6–12 (2009)

    CAS  Google Scholar 

  9. E. Koch, Metal-fluorocarbon pyrolants. J. Pyrotech. 27, 38 (2008)

    CAS  Google Scholar 

  10. J.A. Conkling, C. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory (CRC Press, Boca Raton, 2010)

    Google Scholar 

  11. M. Comet, D. Spitzer, From thermites to metastable interstitial composites (MIC). Actualite Chim, pp. 20–25 (2006)

  12. M. Comet et al., Phosphorus-based nanothermites. J. Phys. Chem. Solids 71(2), 64–68 (2010)

    CAS  Google Scholar 

  13. A.S. Mukasyan, A.S. Rogachev, S.T. Aruna, Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol. 26(3), 954–976 (2015)

    CAS  Google Scholar 

  14. M. Talawar et al., Emerging trends in advanced high energy materials. Combust. Explos. Shock Waves 43(1), 62–72 (2007)

    Google Scholar 

  15. E.C. Koch, Metal–fluorocarbon pyrolants: X. influence of ferric oxide/silicon additive on burn rate and radiometric performance of magnesium/teflon/viton®(MTV). Propellants Explos. Pyrotech. 34(6), 472–474 (2009)

    CAS  Google Scholar 

  16. V.E. Zarko, A.A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  17. P. Brousseau, C.J. Anderson, Propellants, Explosives, Nanometric aluminum in explosives. Pyrotechnics 27(5), 300–306 (2002)

    CAS  Google Scholar 

  18. R.J. Jacob et al., Energy release pathways in nanothermites follow through the condensed state. Combust. Flame 162(1), 258–264 (2015)

    CAS  Google Scholar 

  19. G. Jian, et al., Nanothermite reactions. Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160(2), p. 432–437 (2013)

    CAS  Google Scholar 

  20. K. Monogarov et al., Сombustion of micro-and nanothermites under elevating pressure. Phys. Procedia 72, 362–365 (2015)

    CAS  Google Scholar 

  21. C. Rossi, Two decades of research on nano-energetic materials. Propellants Explos. Pyrotech. 39(3), 323–327 (2014)

    CAS  Google Scholar 

  22. S. Elbasuney et al., Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28(5), 1718–1727 (2018)

    CAS  Google Scholar 

  23. K. Pal et al., Emerging assembly of ZnO-nanowires/graphene dispersed liquid crystal for switchable device modulation. Org. Electron. 56, 291–304 (2018)

    CAS  Google Scholar 

  24. K. Pal et al., Functionalized graphene oxide dispersed hydrogen bonded liquid crystals efficient electro-optical switching. J. Displ. Technol. 12(3), 281–287 (2016)

    CAS  Google Scholar 

  25. S. Sagadevan, K. Pal, Z.Z. Chowdhury, Scalable synthesis of CdS–Graphene nanocomposite spectroscopic characterizations. J. Mater. Sci. Electron. 28(22), 17193–17201 (2017)

    CAS  Google Scholar 

  26. O.C. Compton, S.T. Nguyen, Graphene oxide. Small 6(6), 711–723 (2010)

    CAS  Google Scholar 

  27. Y. Zhu et al., Graphene and graphene oxide. Adv. Mater. 22(35), 3906–3924 (2010)

    CAS  Google Scholar 

  28. A. Bouvy, A. Opstaele, eds, Waterbrone Coating and Additives (Royal Chemical Society, London, 1995)

    Google Scholar 

  29. S. Voyutsky (ed.), Colloid Chemistry (Mir Publisher, Moscow, 1978)

  30. R.J. Hunter, ed, Zeta Potential in Colloid Science (Academic Press, New York, 1981)

    Google Scholar 

  31. S. Elbasuney et al., Stabilized super-thermite colloids. Appl. Surf. Sci. 419, 328–336 (2017)

    CAS  Google Scholar 

  32. S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    CAS  Google Scholar 

  33. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    CAS  Google Scholar 

  34. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    CAS  Google Scholar 

  35. A.A. Nada et al., Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci. 78, 116–125 (2018)

    CAS  Google Scholar 

  36. V.C. Karade et al., A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s In vitro hyperthermia application. Heliyon 5(7), e02044 (2019)

    CAS  Google Scholar 

  37. D.E. Fouad et al., Improved size. Results Phys. 12, 1253–1261 (2019)

    Google Scholar 

  38. M. Sharma, α-Fe2O3 Preparation by Sol-Gel Method (2017).

  39. T. Liang et al., Design of functionalized α-Fe2O3 (III) films with long-term anti-wetting properties. Ceram. Int. 46(5), 6129–6135 (2019)

    Google Scholar 

  40. M. Tadic et al., Magnetic properties of hematite (α-Fe2O3) nanoparticles synthesized by sol-gel synthesis method. J. Electr. Eng. 70(7), 71–76 (2019)

    Google Scholar 

  41. Q.Z. Zeng et al., Hydrothermal synthesis of monodisperse α-Fe2O3 hollow microspheroids and their high gas-sensing properties. J. Alloys Compds. 705, 427–437 (2017)

    CAS  Google Scholar 

  42. F.M. Mosallam et al., Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog. 122, 108–116 (2018)

    CAS  Google Scholar 

  43. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1-x) Fe2O4. Mater. Sci. Eng. C 92, 644–656 (2018)

    Google Scholar 

  44. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    CAS  Google Scholar 

  45. A. Baraka et al., Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap. 71(11), 2271–2281 (2017)

    CAS  Google Scholar 

  46. E.C. Koch, Review on pyrotechnic aerial infrared decoys. Propellants Explos. Pyrotech. 26(1), 3–11 (2001)

    CAS  Google Scholar 

  47. E.C. Koch, Metal-Halocarbon pyrolant combustion, in Handbook of Combustion. ed. by M. Lackner (Wiley, Weinheim, 2010)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., El-Sayyad, G.S., Elmotaz, A.A. et al. Multi-component nanocomposite infrared flare with superior infrared signature via synergism of nanothermite and reduced graphene oxide. J Mater Sci: Mater Electron 31, 11520–11526 (2020). https://doi.org/10.1007/s10854-020-03699-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03699-8

Navigation