Skip to main content
Log in

Synthesis and characterization of (Cu1−xAgx)2ZnSnS4 nanoparticles with phase transition and bandgap tuning

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi-component chalcogenide (Cu1−xAgx)2ZnSnS4 (CAZTS, x = 0, 0.1, 0.2, 0.3, 0.4) nanoparticles were synthesized by incorporation of Ag into wurtzite Cu2ZnSnS4 (CZTS) using a simple one-pot method and were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis–NIR absorption spectrum, respectively. The synthesized nanoparticles exhibit the phase transition from wurtzite to kesterite structure when the substitution ratio (x) of Ag is around 0.3. The bandgaps of CAZTS nanoparticles are in the range of 1.43–1.64 eV. This finding indicates that Ag substitution in wurtzite CZTS is an effective way to adjust the bandgap and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. C 95, 1421–1436 (2011)

    CAS  Google Scholar 

  2. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S, Se)4 Solar Cells. Adv. Energy Mater. 3, 34–38 (2013)

    CAS  Google Scholar 

  3. C. Malerba, F. Biccari, C.L.A. Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, CZTS stoichiometry effects on the band gap energy. J. Alloy. Compd. 582, 528–534 (2014)

    CAS  Google Scholar 

  4. J.W. Cho, A. Ismail, S.J. Park, W. Kim, S. Yoon, B.K. Min, Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications. ACS Appl. Mater. Interface 5, 4162–4165 (2013)

    CAS  Google Scholar 

  5. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy. Mater. 4, 1301465 (2014)

    Google Scholar 

  6. T. Kato, J.L. Wu, Y. Hirai, H. Suhimoto, V. Bermudez, Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2. IEEE J. Photovolt. 9, 325–330 (2018)

    Google Scholar 

  7. X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovolt. 24, 879–898 (2016)

    Google Scholar 

  8. S.K. Wallace, D.B. Mitzi, A. Walsh, The steady rise of kesterite solar cells. ACS Energy. Lett. 2, 776–779 (2017)

    CAS  Google Scholar 

  9. S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F. Donnatini, G. Rey, S. Siebentritt, A. Walsh, G. Dennler, Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016)

    Google Scholar 

  10. S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010)

    Google Scholar 

  11. J. Li, D. Wang, X. Li, Y. Zeng, Y. Zhang, Cation substitution in earth-abundant kesterite photovoltaic materials. Adv. Sci. 5, 1700744 (2018)

    Google Scholar 

  12. S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81, 245204 (2010)

    Google Scholar 

  13. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013)

    Google Scholar 

  14. D.B. Khadka, J.H. Kim, Structural transition and band gap tuning of Cu2(Zn, Fe)SnS4 chalcogenide for photovoltaic application. J. Phys. Chem. C 118, 14227–14237 (2014)

    CAS  Google Scholar 

  15. Z. Shadrokh, A. Yazdani, H. Eshghi, Solvothermal synthesis of Cu2Zn1−xFexSnS4 nanoparticles and the influence of annealing conditions on drop-casted thin films. Semicond. Sci. Technol. 31, 045004 (2016)

    Google Scholar 

  16. K.L. Huang, C.H. Huang, W.T. Lin, Y.S. Fu, T.F. Guo, Solvothermal synthesis and tunable bandgap of Cu2(Zn1−xCox)SnS4 and Cu2(Fe1−xCox)SnS4 nanocrystals. J. Alloy. Compd. 646, 1015–1022 (2015)

    CAS  Google Scholar 

  17. A.H. Pinto, S.W. Shin, A. Sharma, R.L. Penn, E.S. Aydil, Synthesis of Cu2(Zn1−xCox)SnS4 nanocrystals and formation of polycrystalline thin films from their aqueous dispersions. J. Mater. Chem. A 6, 999–1008 (2018)

    CAS  Google Scholar 

  18. I.G. Orletskii, P.D. Mar’yanchuk, M.N. Solovan, E.V. Maistruk, D.P. Kozyarskii, Peculiarities in electrical and optical properties of Cu2Zn1–xMnxSnS4 films obtained by spray pyrolysis. Technol. Phys. Lett. 42, 291–294 (2016)

    CAS  Google Scholar 

  19. Z. Su, J.M.R. Tan, X. Li, X. Zeng, S.K. Batabyal, L.H. Wong, Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv. Energy Mater. 5, 1500682 (2015)

    Google Scholar 

  20. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B.P. Veettil, K. Sun, A. Pu, F.Z. Zhou, J.A. Stride, M.A. Green, X.J. Hao, Beyond 11% efficient sulfide kesterite Cu2ZnxCd1–xSnS4 Solar cell: effects of cadmium alloying. ACS Energy Lett. 2, 930–936 (2017)

    CAS  Google Scholar 

  21. Y. Qi, Q. Tian, Y. Meng, D. Kou, Z.J. Zhou, W.H. Zhou, S.X. Wu, Elemental precursor solution processed (Cu1–xAgx)2ZnSn(S, Se)4 photovoltaic devices with over 10% efficiency. ACS Appl. Mater. Interface 9, 21243–21250 (2017)

    CAS  Google Scholar 

  22. Y. Zhao, X. Han, B. Xu, W. Li, J. Li, J. Li, M. Wang, C. Dong, P. Ju, J. Li, Enhancing open-circuit voltage of solution-processed Cu2ZnSn(S, Se)4 solar cells with Ag substitution. IEEE J. Photovolt. 7, 874–881 (2017)

    Google Scholar 

  23. Z.K. Yuan, S. Chen, H. Xiang, X.G. Gong, A. Walsh, J.S. Park, I. Repins, S.H. Wei, Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu- and Ag-based kesterite compounds. Adv. Funct. Mater. 25, 6733–6743 (2015)

    CAS  Google Scholar 

  24. X. Liang, P. Wang, B. Huang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, X. Qin, X. Zhang, Y. Dai, Ag2ZnSnS4/Mo-mesh photoelectrode prepared by electroplating for efficient photoelectrochemical hydrogen generation. J. Mater. Chem. A 7, 1647–1657 (2019)

    CAS  Google Scholar 

  25. H. Cui, X. Liu, F. Liu, X. Hao, N. Song, C. Yan, Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact. Appl. Phys. Lett. 104, 041115 (2014)

    Google Scholar 

  26. A. Guchhait, Z. Su, Y.F. Tay, S. Shukla, W. Li, S.W. Leow, J.M.R. Tan, S. Lie, O. Gunawan, L.H. Wong, Enhancement of open-circuit voltage of solution-processed Cu2ZnSnS4 solar cells with 72% efficiency by incorporation of silver. ACS Energy Lett. 1, 1256–1261 (2016)

    CAS  Google Scholar 

  27. T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, R. Haight, Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1–x)2ZnSnSe4. Adv. Energy Mater. 6, 1502468 (2016)

    Google Scholar 

  28. S. Yang, S. Wang, H. Liao, X. Xu, Z. Tang, X. Li, T. Wang, X. Li, D. Liu, The impact of different Ag/(Ag+Cu) ratios on the properties of (Cu1−xAgx)2ZnSnS4 thin films. J. Mater. Sci. Mater. Electron. 30, 11171–11180 (2019)

    CAS  Google Scholar 

  29. Y.F. Qi, D.X. Kou, W.H. Zhou, Z.J. Zhou, Q.W. Tian, Y.N. Meng, X.S. Liu, Z.L. Du, S.X. Wu, Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag)2ZnSn(S, Se)4 solar cells. Energy Environ. Sci. 10, 2401–2410 (2017)

    CAS  Google Scholar 

  30. K. Kaur, K. Arora, B. Behzad, Q. Qiao, M. Kumar, Nanoscale charge transport and local surface potential distribution to probe defect passivation in Ag doped Cu2ZnSnS4 absorbing layer. Nanotechnology 30, 065706 (2018)

    Google Scholar 

  31. S. Chen, A. Walsh, Y. Luo, J.H. Yang, X.G. Gong, S.H. Wei, Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B 82, 195203 (2010)

    Google Scholar 

  32. X. Lu, Z. Zhuang, Q. Peng, Y. Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem. Commun. 47, 3141–3143 (2011)

    CAS  Google Scholar 

  33. U.V. Ghorpade, M.P. Suryawanshi, S.W. Shin, C.W. Hong, I. Kim, J.H. Moon, J.H. Yun, J.H. Kim, S.S. Kolekar, Wurtzite CZTS nanocrystals and phase evolution to kesterite thin film for solar energy harvesting. Phys. Chem. Chem. Phys. 17, 19777–19788 (2015)

    CAS  Google Scholar 

  34. M. Li, W.H. Zhou, J. Guo, Y.L. Zhou, Z.L. Hou, J. Jiao, Z.J. Zhou, Z.L. Du, S.X. Wu, Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method. J. Phys. Chem. C 116, 26507–26516 (2012)

    CAS  Google Scholar 

  35. Y. Zhao, Q. Qiao, W.H. Zhou, X.Y. Cheng, D.X. Kou, Z.J. Zhou, S.X. Wu, Wurtzite Cu2ZnSnS4 nanospindles with enhanced optical and electrical properties. Chem. Phys. Lett. 592, 144–148 (2014)

    CAS  Google Scholar 

  36. J. Kong, Z. Zhou, M. Li, W. Zhou, S. Yuan, R. Yao, Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells. Nano. Res. Lett. 8, 464 (2013)

    Google Scholar 

  37. Z. Xu, Z. Guan, J. Yang, Q. Li, Band positions and photoelectrochemical properties of solution-processed silver-substituted Cu2ZnSnS4 photocathode. ACS Appl. Energy Mater. 2, 2779–2785 (2019)

    CAS  Google Scholar 

  38. T.H. Nguyen, T. Kawaguchi, J. Chantana, T. Minemoto, T. Harada, S. Nakanishi, S. Ikeda, Structural and solar cell properties of a Ag-containing Cu2ZnSnS4 thin film derived from spray pyrolysis. ACS Appl. Mater. Interface 10, 5455–5463 (2018)

    CAS  Google Scholar 

  39. H. Qing, Y. Zhu, Y. Hu, W. Hu, W. Zhou, J. Yi, T. Shen, A facile two-step-heating route to synthesize hierarchical metastable wurtzite Cu2ZnSnS4 microcrystals under the open-air condition. Mater. Lett. 176, 177–180 (2016)

    CAS  Google Scholar 

  40. X. Liang, P. Wang, B. Huang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, X. Qin, X. Zhang, Y. Dai, Effects of Ag incorporation on the band structures and conductivity types of (Cu1xAgx)2ZnSnS4 solid solutions. ChemPhotoChem 2, 811–817 (2018)

    CAS  Google Scholar 

  41. H. Chen, S.M. Yu, D.W. Shin, J.B. Yoo, Solvothermal synthesis and characterization of chalcopyrite CuInSe2 nanoparticles. Nanoscale Res. Lett. 5, 217 (2010)

    CAS  Google Scholar 

  42. M. Danilson, M. Altosaar, M. Kauk, A. Kateski, J. Krustok, J. Raudoja, XPS study of CZTSSe monograin powders. Thin. Solid. Films 519, 7407–7411 (2011)

    CAS  Google Scholar 

  43. M. Tsega, F.B. Dejene, D.H. Kuo, Morphological evolution and structural properties of Cu2ZnSn(S, Se)4 thin films deposited from single ceramic target by a one-step sputtering process and selenization without H2Se. J. Alloy. Compd. 642, 140–147 (2015)

    CAS  Google Scholar 

  44. Y. Jiang, B. Yao, Y. Li, Z. Ding, H. Luan, J. Jia, Y. Li, K. Shi, Y. Sui, B. Zhang, Structure, optical and electrical properties of (Cu1-xAgx)2ZnSn(S, Se)4 alloy thin films for photovoltaic application. Mater. Sci. Semicond. Proc. 81, 54–59 (2018)

    CAS  Google Scholar 

  45. A. Singh, H. Geaney, F. Laffir, K.M. Ryan, Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 134, 2910–2913 (2012)

    CAS  Google Scholar 

  46. X.Y. Chen, J.L. Wang, W.H. Zhou, Z.X. Chang, D.X. Kou, Z.J. Zhou, Q.W. Tian, Y.N. Meng, S.X. Wu, Rational synthesis of (Cu1−xAgx)2ZnSnS4 nanocrystals with low defect and tuning band gap. Mater. Lett. 181, 317–320 (2016)

    CAS  Google Scholar 

  47. W. Gong, T. Tabata, K. Takei, M. Morihama, T. Maeda, T. Wada, Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions. Phys. Status. Solidi. C 12, 700–703 (2015)

    CAS  Google Scholar 

  48. Z. Zhao, C. Ma, Y. Cao, J. Yi, X. He, J. Qiu, Electronic structure and optical properties of wurtzite-kesterite Cu2ZnSnS4. Phys. Lett. A 377, 417–422 (2013)

    CAS  Google Scholar 

  49. S. Chen, X.G. Gong, S.H. Wei, Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X = S and Se) and their alloys. Phys. Rev. B 75, 205209 (2007)

    Google Scholar 

  50. A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norris, E.S. Aydil, Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem. Commun. 47, 11721–11723 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Science Foundation of China (No. 61764010) and supported by National Natural Science Foundation of China (No. 11564002) and sponsored by Natural Science Foundation of Shanghai (17ZR1409600) and supported by the State Key Laboratory of Surface Physics of Fudan University (KF2018-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhong Sun or Feng Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Xu, F., Zhu, Y. et al. Synthesis and characterization of (Cu1−xAgx)2ZnSnS4 nanoparticles with phase transition and bandgap tuning. J Mater Sci: Mater Electron 31, 5760–5768 (2020). https://doi.org/10.1007/s10854-020-03146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03146-8

Navigation