Skip to main content
Log in

Co3O4/α-Fe2O3 nanocomposites (NCs): synthesis and characterization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt oxide, hematite, and Co3O4/α-Fe2O3 nanopowders (NPs) have been successfully synthesized by hydrothermal technique. Co3O4 is well crystallized in spinel cubic structure, while the hematite possesses the rhombohedral structure. The mixture of these two materials gave spinel cobalt ferrite. The average crystallite size calculated from Scherer’s equation was 49 and 34 nm for Fe2O3 and Co3O4, respectively, while it is decreased to 19 nm for the Co3O4/α-Fe2O3 NCs. This reduction is probably attributed to the high enthalpy of formation of the mixture in comparison with the two other materials. Scanning electron microscopy and transmission electron microscopy photographs indicate that the Co3O4/α-Fe2O3 NPs are composed of homogenous spherical grains and small agglomerated crystallites. All the prepared samples exhibited a superparamagnetic behavior with very low remanence and coercivity. The origin of the superparamagnetism may be related to the uncompensated surface spin and tiny size of the nanoparticles. The magnetization at saturation of the mixture is strongly enhanced to 45.7 emu/g after it was around 2 emu/g for both Co3O4 and hematite. BET analysis showed that the composite had a high surface area (around 60 m2/g) compared to Co3O4 and hematite. This makes Co3O4/α-Fe2O3 a good candidate for several applications such as drag delivery, supercapacitors, and magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.Y. Nassar, Mater. Lett. 94, 112–115 (2013)

    Article  CAS  Google Scholar 

  2. J. Gajendiran, V. Rajendran, Mater. Sci. Semicond. Process. 17, 59–62 (2014)

    Article  CAS  Google Scholar 

  3. R. Tummala, R.K. Guduru, P.S. Mohanty, J. Power Sources 209, 44–51 (2012)

    Article  CAS  Google Scholar 

  4. F. Wang, J. Liu, X. Wang, J. Kong, S. Qiu, G. Lu, C. He, Mater. Lett. 76, 159–161 (2012)

    Article  CAS  Google Scholar 

  5. L. Xu, Y. Zhou, Z. Wu, G. Zheng, J. He, Y. Zhou, J. Phys. Chem. Solids 106, 29–36 (2017)

    Article  CAS  Google Scholar 

  6. Y. Liu, L. Sun, J. Wu, T. Fang, R. Cai, A. Wei, Mater. Sci. Eng. B 194, 9–13 (2015)

    Article  CAS  Google Scholar 

  7. D. Malwal, P. Gopinath, J. Hazard. Mater. 321, 611–621 (2017)

    Article  CAS  Google Scholar 

  8. A. Lavín, R. Sivasamy, E. Mosquera, M.J. Morel, Surf. Interfaces 17, 100367 (2019)

    Article  Google Scholar 

  9. W. Wang, L. Xu, R. Zhang, J. Xu, F. Xian, J. Su, F. Yan, Chem. Phys. Lett. 721, 57–61 (2019)

    Article  CAS  Google Scholar 

  10. F.S. Hashim, A.F. Alkaim, S.M. Mahdi, A.H. Omran Alkhayatt, Compos. Commun. 16, 111–116 (2019)

    Article  Google Scholar 

  11. S.H. Güler, Ö. Güler, E. Evin, S. Islak, Optik 127, 3187–3191 (2016)

    Article  Google Scholar 

  12. E. Alp, H. Eşgin, M. Kürşat Kazmanlı, A. Genç, Ceram. Int. 45, 9174–9178 (2019)

    Article  CAS  Google Scholar 

  13. J.A. Melero, G. Calleja, F. Martínez, R. Molina, Catal. Commun. 7, 478–483 (2006)

    Article  CAS  Google Scholar 

  14. M.M. Natile, A. Glisenti, J. Mol. Catal. A 217, 175–184 (2004)

    Article  CAS  Google Scholar 

  15. A. Din, K. Akhtar, K.S. Karimov, N. Fatima, A.M. Asiri, M.I. Khan, S.B. Khan, J. Mol. Liq. 237, 266–271 (2017)

    Article  CAS  Google Scholar 

  16. B. Yang, J. Liu, H. Qin, Q. Liu, X. Jing, H. Zhang, R. Li, G. Huang, J. Wang, J. Alloys Compd. 727, 52–62 (2017)

    Article  CAS  Google Scholar 

  17. Y. Xiang, Y. Zhu, J. Lu, C. Zhu, M. Zhu, Q. Xie, T. Chen, Solid State Sci. 93, 79–86 (2019)

    Article  CAS  Google Scholar 

  18. Q.Q. Xiong, X.H. Xia, J.P. Tu, J. Chen, Y.Q. Zhang, D. Zhou, C.D. Gu, X.L. Wang, J. Power Sources 240, 344–350 (2013)

    Article  CAS  Google Scholar 

  19. I.C.B. Alves, J.R.N. Santos, D.S.S. Viégas, E.P. Marques, C.A. Lacerda, L. Zhang, J. Zhang, A.L.B. Marques, J. Braz. Chem. Soc. 30, 2681–2690 (2019)

    CAS  Google Scholar 

  20. A. Abdelkader, H. Daly, Y. Saih, K. Morgan, M.A. Mohamed, S.A. Halawy, C. Hardacre, Int. J. Hydrogen Energy 38, 8263–8275 (2013)

    Article  CAS  Google Scholar 

  21. A. Mirzaei, S. Park, G.J. Sun, H. Kheel, C. Lee, J. Korean Phys. Soc. 69, 373–380 (2016)

    Article  CAS  Google Scholar 

  22. H. Jin, X. Gu, B. Hong, L. Lin, C. Wang, D. Jin, X. Peng, X. Wang, H. Ge, J. Phys. Chem. C 116, 13374 (2012)

    Article  CAS  Google Scholar 

  23. M.F. Valan, A. Manikandan, S. Arul Antony, J. Nanosci. Nanotechnol. 14, 1–7 (2014)

    Article  Google Scholar 

  24. V. Raman, S. Suresh, P.A. Savarimuthu, T. Raman, A.M. Tsatsakis, K.S. Golokhvast, V.K. Vadivel, Exp. Ther. Med. 11, 553–560 (2016)

    Article  CAS  Google Scholar 

  25. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978), p. 102

    Google Scholar 

  26. A. Goldman, Modern Ferrite Technology (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  27. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  28. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  29. Uvarov and Popov, Mater. Charact. 85, 111 (2013)

    Article  Google Scholar 

  30. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  31. Q.Z. Zeng, S.Y. Ma, W.X. Jin, H.M. Yang, H. Chen, Q. Ge, L. Ma, J. Alloys Compd. 705, 427–437 (2017)

    Article  CAS  Google Scholar 

  32. C.M. Hung, N.D. Hoa, N.V. Duy, N.V. Toan, D.T. Thanh Le, N.V. Hieu, J. Sci. Adv. Mater. Dev. 1, 45–50 (2016)

    Google Scholar 

  33. M.A. Chougule, S. Sen, V.B. Patil, Ceram. Int. 38, 2685–2692 (2012)

    Article  CAS  Google Scholar 

  34. M. Salavati-Niasari, A. Khansari, C. R. Chim. 17, 352–358 (2014)

    Article  CAS  Google Scholar 

  35. S. Farhadi, M. Javanmrad, G. Nadri, Acta Chim. Slov. 63, 335–343 (2016)

    Article  CAS  Google Scholar 

  36. J. Ma, S. Zhang, W. Liu, Y. Zhao, J. Alloys Compd. 490, 647–651 (2010)

    Article  CAS  Google Scholar 

  37. W.L. Roth, J. Phys. Chem. Solid 25, 1 (1964)

    Article  CAS  Google Scholar 

  38. G. Anandha-Babu, G. Ravi, Y. Hayakawa, M. Kumaresavangi, J. Magn. Magn. Mater. 375, 184–193 (2015)

    Article  CAS  Google Scholar 

  39. G. Li, Y. Jiang, K. Huang, P. Ding, J. Chen, J. Alloys Compd. 466, 451–456 (2008)

    Article  CAS  Google Scholar 

  40. J. Zhi, Y. Wang, Y. Lu, J. Ma, G. Luo, Reat. Funct. Polym. 66, 1552–1558 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors, therefore, acknowledge with thanks DSR technical and financial support.

Funding

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. 130-166-D1440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hjiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M., Aida, M.S. Co3O4/α-Fe2O3 nanocomposites (NCs): synthesis and characterization. J Mater Sci: Mater Electron 31, 5591–5598 (2020). https://doi.org/10.1007/s10854-020-03125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03125-z

Navigation