Skip to main content
Log in

Effect of Cobalt Ion Concentration and Thermal Annealing Temperature on Structural and Magnetic Properties of CoFe2O4 Nanoparticles

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Exploring the physical properties of magnetic nanoferrites for applications in data storage media and biomedicine is a crucial step, providing new insights into the physics of nanostructured materials. Here, the focus is on studying the effect of cobalt ion concentration and thermal annealing temperature on the structural and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized using a co-precipitation method. To this end, Co1−x(Fe2O4)x (x = 0.25, 0.5, and 0.75 M) NPs are initially prepared and then thermally annealed at different temperatures (T = 400–800 °C). X-ray diffraction patterns along with field-emission scanning electron microscopic images indicate the formation of inverse cubic spinel structure with different crystallite sizes and NP size distributions when changing the cobalt ion concentration. Based on hysteresis loop measurements, magnetic parameters such as saturation magnetization (Ms) and coercivity (Hc) show increasing trends from 5.641 emu/g and 146.246 Oe to 8.936 emu/g and 1789.555 Oe when decreasing the cobalt ion concentration. By performing the annealing process, magnetic properties are significantly enhanced in the case of x = 0.25 and 0.5 at T = 400 °C and 600 °C, achieving Ms = 129.954 emu/g and Hc = 1137.697 Oe. Meanwhile, first-order reversal curve (FORC) diagrams are employed to map magnetostatic interactions and coercivity distributions as a function of cobalt ion concentration for NPs annealed at T = 400 °C, manifesting magnetically soft and hard phases. It is found the maximum FORC distribution shifts to higher Hc values with decreasing cobalt ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

No datasets were generated or analyzed during the current study.

References

  1. Stafford S, Garcia RS, Gun’ko YK (2018) Multimodal magnetic-plasmonic nanoparticles for biomedical applications. Appl Sci 8:97

    Article  Google Scholar 

  2. Urries I, Muñoz C, Gomez L, Marquina C, Sebastian V, Arruebo M, Santamaria J (2014) Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. J Nanoscale 12:1–12

    Google Scholar 

  3. Shams SF, Ghazanfari MR, Schmitz-Antoniak C (2019) Magnetic-plasmonic heterodimer nanoparticles: Designing contemporarily features for emerging biomedical diagnosis and treatments. Nanomaterials 9:97. https://doi.org/10.3390/nano9010097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kooti M, Saiahi S, Motamedi H (2013) Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J Magn Magn Mater 333:138–143

    Article  CAS  Google Scholar 

  5. Mikalauskaite A, Kondrotas R, Niaura G, Jagminas A (2015) Gold-coated cobalt ferrite nanoparticles via methionine-induced reduction. J Phys Chem C 119:17398–17407

    Article  CAS  Google Scholar 

  6. Yang Z, Zhang Z, Jiang Y, Chi M, Nie G, Lu X, Wang C (2016) Palladium nanoparticles modified electrospun CoFe2O4 nanotubes with enhanced peroxidase-like activity for colorimetric detection of hydrogen peroxide. RSC Adv 6:33636–33642

    Article  CAS  Google Scholar 

  7. Vadivel M, Babu RR, Sethuraman K, Ramamurthi K, Arivanandhan M (2014) Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method. J Magn Magn Mater 362:122–129. https://doi.org/10.1016/j.jmmm.2014.03.016

    Article  CAS  Google Scholar 

  8. Heydaryan K, Kashi MA, Montazer AH (2022) Tuning specific loss power of CoFe2O4 nanoparticles by changing surfactant concentration in a combined co-precipitation and thermal decomposition method. Ceram Int 48:16967–16976

    Article  CAS  Google Scholar 

  9. Yue H, Yong L, Chunlong F, Zhi Y, Lu Z, Rui X, Di Y, Jing S (2010) J Appl Phys 108:084312

    Article  Google Scholar 

  10. Franco A, Silva FC (2010) Appl Phys Lett 96:172505

    Article  Google Scholar 

  11. Mohamed RM, Rashad MM, Haraz FA, Sigmund W (2010) J Magn Mag Mater 322(14):2058

    Article  CAS  Google Scholar 

  12. Houshiar M, Zebhi F, Razi ZJ, Alidoust A, Askari Z (2014) Synthesis of cobalt ferrite(CoFe2O4) nanoparticles using combustion, co precipitation, and precipitation methods A comparison study of size structural and magnetic properties. J Magn Magn Mater 371:43–48

    Article  CAS  Google Scholar 

  13. Anis-ur-Rehman M, Abdullah A, Ansari M, Awan M (2011) Synthesis and thermoelectric behavior in nanoparticles of doped Co ferrites. Int J Phys Math Sci 5:568–570. https://doi.org/10.5281/zenodo.1059429

    Article  Google Scholar 

  14. Al-Salman HS, Abdullah M (2013) Fabrication and characterization of undoped and cobalt-doped ZnO based UV photodetector prepared by RF-sputtering. J Mater Sci Technol 29:1139–1145. https://doi.org/10.1016/j.jmst.2013.10.007

    Article  CAS  Google Scholar 

  15. Fahim H, Jabbar H, Al-Fregi AA (2023) Investigation on thermally induced spin crossover in Fe (Phen)molecules. JCHR 13(3):1423–1434

    Google Scholar 

  16. Arulmurugan R, Vaidyanathan G, Sendhilnathan S, Jeyadevan B (2006) J Magn Magn Mater 298:83

    Article  CAS  Google Scholar 

  17. Goldman A (2006) Modern ferrite technology, 2nd edn. Springer, Pittsburgh, PA, USA

    Google Scholar 

  18. Al-zyadi JMK, Kadhim AA, Yao K-L (2018) Electronic and magnetic properties of the (001) surface of the CoNbMnSi Heusler alloy: First-principles calculations. J Electron Spectrosc Relat Phenom 226:17–21. https://doi.org/10.1016/j.elspec.2018.04.005

    Article  CAS  Google Scholar 

  19. Rajendran M, Pullar RC, Bhattacharya AK, Das D, Chintalapudi SN, Majumdar CK (2001) J Magn Magn Mater 232:71

    Article  CAS  Google Scholar 

  20. Safi R, Ghasemi A, Shoja-Razavi R, Ghasemi E, Sodaee T (2016) Rietveld structure refinement, cations distribution and magnetic features of CoFe2O4 nanoparticles synthesized by co-precipitation, hydrothermal, and combustion methods. Ceram Int 42:6375–6382. https://doi.org/10.1016/j.ceramint.2016.01.032

    Article  CAS  Google Scholar 

  21. Nagasa BD, Raghavender AT, Kabeta KL, Anjaneyulu T, Regasa MB (2015) Size induced structural and magnetic properties of nanostructured cobalt ferrites synthesized by co-precipitation technique. Sci Technol Arts Res J 4(1):84–87

    Article  CAS  Google Scholar 

  22. Yakubu A, Abbas Z, Ibrahim NA, Hashim M (2015) Effect of temperature on structural, magnetic and dielectric properties of cobalt ferrite nanoparticles prepared via co-precipitation method. Phys Sci Int J 8:1–8. https://doi.org/10.9734/PSIJ/2015/18787

    Article  Google Scholar 

  23. Prabhakaran T, Mangalaraja R, Denardin JC (2018) Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method. Mater Res Express 5:026102. https://doi.org/10.1088/2053-1591/aaa73f

    Article  CAS  Google Scholar 

  24. Zhang Y, Yang Z, Yin D, Liu Y, Fei C, Xiong R, Shi J, Yan G (2010) J Magn Magn Mater 322:3470

    Article  CAS  Google Scholar 

  25. Peng J, Hojamberdiev M, Xu Y, Cao B, Wang J, Wu H (2011) J Magn Magn Mater 323:133

    Article  CAS  Google Scholar 

  26. Iqbal MJ, Siddiquah MR (2008) J Alloys Compd 453:513

    Article  CAS  Google Scholar 

  27. Hankare PP, Sankpal UB, Patil RP, Mulla IS, Lokhande PD, Gajbhiye NS (2009) J Alloys Compd 485:798

    Article  CAS  Google Scholar 

  28. Gul IH, Maqsood A (2008) J Alloys Compd 465:227

    Article  CAS  Google Scholar 

  29. Zi Z, Sun Y, Zhu X, Yang Z, Dai J, Song W (2009) Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater 321:1251–1255

    Article  CAS  Google Scholar 

  30. Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) J Magn Magn Mater 308:289

    Article  CAS  Google Scholar 

  31. Lu RE, Chang KG, Fu B, Shen YJ, Xu MW, Yang S, Song XP, Liub M, Yang YD (2014) Magnetic properties of different CoFe2O4 nanostructures: nanofibers versus nanoparticles. J Mater Chem C 2:8578–8584

    Article  CAS  Google Scholar 

  32. Kumar Y, Sharma A, Shirage PM (2017) The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe2O4 nanoparticles. J Alloys Compd 716:171–183

    Article  Google Scholar 

  33. Nithiyanantham S, Viviliya S, Anandhan S, Mahalakshmi S (2021) Synthesis and characterization of cobalt ferrite through co-precipitation technique. Open-Access J 10(1):1871–1876

    Google Scholar 

  34. Heydaryan K, Mohammadalizadeh M, Montazer AH, Kashi MA (2023) Reaction time-induced improvement in hyperthermia properties of cobalt ferrite nanoparticles with different sizes. Mater Chem Phys 303:127773. https://doi.org/10.1016/j.matchemphys.2023.127773

    Article  CAS  Google Scholar 

  35. Elmekawy A, Iashina E, Dubitskiy I, Sotnichuk S, Bozhev I, Napolskii K et al (2020) Magnetic properties and FORC analysis of iron nanowire arrays. Mater Today Commun 25:101609. https://doi.org/10.1016/j.mtcomm.2020.101609

    Article  CAS  Google Scholar 

  36. Sinuhaji P, Simbolon TR, Hamid M, Hutajulu DA, Sembiring T, Rianna M et al (2021) Influences of Co compositions in CoFe2O4 on microstructures, thermal, and magnetic properties. Case Stud Therm Eng 26:101040. https://doi.org/10.1016/j.csite.2021.101040

    Article  Google Scholar 

  37. Esmaeili A, Almasi Kashi M, Ramazani A, Montazer AH (2016) J Magn Magn Mater 397:64–72

    Article  CAS  Google Scholar 

  38. Roberts AP, Heslop D, Zhao X, Pike CR (2014) Rev Geophys 52:557–602

    Article  Google Scholar 

  39. Deshmukh V, Nagaswarupa H, Raghavendra N (2021) Development of Co-doped MnFe2O4 nanoparticles for electrochemical supercapacitors. Ceram Int 47:10268–10273. https://doi.org/10.1016/j.ceramint.2020.07.191

    Article  CAS  Google Scholar 

  40. Kashi MA, Heydaryan K (2023) A comparative study on characterization and hyperthermia properties of CoFe2O4 nanoparticles synthesized with different surfactants. J Mater Sci: Mater Electron 34:2255

    CAS  Google Scholar 

  41. Standley KJ (1972) Oxide magnetic materials. Clarendon Press, Oxford

    Google Scholar 

  42. More SS, Kadam RH, Kadam AB, Mane DR, Bichile GK (2010) Cent Eur J Chem 8(2):419

    CAS  Google Scholar 

  43. Byrne J, Coker V, Moise S, Wincott P, Vaughan D, Tuna F et al (2013) Controlled cobalt doping in biogenic magnetite nanoparticles. J R Soc Interface 10:20130134. https://doi.org/10.1098/rsif.2013.0134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Safi R, Ghasemi A, Shoja-Razavi R, Tavousi M (2015) The role of pH on the particle size and magnetic consequence of cobalt ferrite”. J Magn Magn Mater 396:288–294

    Article  CAS  Google Scholar 

  45. Kumar Y, Sharma A, Shirage PM (2019) Impact of different morphologies of CoFe2O4 nanoparticles for tuning of structural, optical and magnetic properties. J Alloys Compds 778:398–409

    Article  CAS  Google Scholar 

  46. Rai AK, Thi TV, Gim J, Mathew V, Kim J (2014) Co1−xFe2+xO4 (x= 0.1, 0.2) anode materials for rechargeable lithium-ion batteries. Solid State Sci 36:1–7. https://doi.org/10.1016/j.solidstatesciences.2014.07.002

    Article  CAS  Google Scholar 

  47. Sharifi I, Shokrollahi H, Doroodmand MM, Safi R (2012) Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J Magn Magn Mater 324:1854–1861

    Article  CAS  Google Scholar 

  48. Obaidat IM, Narayanaswamy V, Alaabed S, Sambasivam S, Muralee Gopi ChVV (2019) Principles of magnetic hyperthermia: a focus on using multifunctional hybrid magnetic nanoparticles. Magnetochemistry 5(67):1–40

    Google Scholar 

  49. Kumari S, Pradhan LK, Kumar L, Manglam MK, Kar M (2019) Effect of annealing temperature on morphology and magnetic properties of cobalt ferrite nanofibers. Mater Res Express 6:1250a3. https://doi.org/10.1088/2053-1591/ab5fa1

    Article  CAS  Google Scholar 

  50. Khanahmadzadeh S, Heydaryan K (2022) Synthesis of cobalt ferrite nanoparticles and investigation of magnetic hyperthermia properties at different concentrations. J Appl Res Chem 16:64–72

    Google Scholar 

  51. Dippong T, Cadar O, Levei EA, Leostean C, Tudoran LB (2017) Effect of annealing on the structure and magnetic properties of CoFe2O4: SiO2 nanocomposites. Ceram Int 43:9145–9152. https://doi.org/10.1016/j.ceramint.2017.04.063

    Article  CAS  Google Scholar 

  52. Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan MP, Philip J, Raj B (2010) Influence of Co+2 ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J Phys Chem C 114:6334–6341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ameer F. Shamkhi wrote the main manuscript text, and Hashim Jabbar reviewed the manuscript.

Corresponding author

Correspondence to Ameer F. Shamkhi.

Ethics declarations

Consent for Publication

The corresponding author attests that this study has been approved by all the co-authors concerned.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

By submitting the manuscript, the authors understand that the material presented in this manuscript has not been published before, nor has it been submitted for publication in another journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamkhi, A.F., Jabbar, H. Effect of Cobalt Ion Concentration and Thermal Annealing Temperature on Structural and Magnetic Properties of CoFe2O4 Nanoparticles. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02279-4

Keywords

Navigation