Skip to main content
Log in

Enhancement of thermoelectric performances of BiCuSeO through Y doping and grain refining

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric properties of BiCuSeO oxyselenide ceramics were improved combining Y doping and grain refinement. Bi1−xYxCuSeO (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) (called as BYCSO below) samples were prepared by mechanical alloying and resistance pressing sintering (RPS). The testing results indicate that Y doping can increase the carrier concentration and electrical conductivity, increase the thermal conductivity. On the basis of Y doping, grain refinement by increasing ball milling strength was indicated to increase the concentration of Cu vacancies, which enhanced the electrical conductivity and power factor, and reduce the thermal conductivity. Finally, the ZT value is increased to 0.93, which is 98% higher than that of the pure sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23(8), 913–935 (2003)

    Article  Google Scholar 

  2. T. Kajikawa, Thermoelectric application for power generation in Japan. Adv. Sci. Technol. 74(4), 83–92 (2010)

    Article  CAS  Google Scholar 

  3. I. Petsagkourakis, K. Tybrandt, X. Crispin et al., Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 19(1), 836–862 (2018)

    Article  CAS  Google Scholar 

  4. J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357(6358), eaak9997 (2017)

    Article  Google Scholar 

  5. T. Mori, S. Priya, Materials for energy harvesting: at the forefront of a new wave. MRS Bull. 43(3), 176–180 (2018)

    Article  Google Scholar 

  6. B. Poudel, Q. Hao, Y. Ma et al., High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008)

    Article  CAS  Google Scholar 

  7. J.P. Heremans, V. Jovovic, E.S. Toberer et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554–557 (2008)

    Article  CAS  Google Scholar 

  8. R. Funahashi, Waste heat recovery using thermoelectric oxide materials. Sci. Adv. Mater. 3(4), 682–686 (2011)

    Article  CAS  Google Scholar 

  9. S. Walia, S. Balendhran, H. Nili et al., Transition metal oxides-thermoelectric properties. Prog. Mater. Sci. 58(8), 1443–1489 (2013)

    Article  CAS  Google Scholar 

  10. L.D. Zhao, J. He, D. Berardan et al., BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 7(9), 2900–2924 (2014)

    Article  CAS  Google Scholar 

  11. X. Zhang, C. Chang, Y. Zhou et al., BiCuSeO thermoelectrics: an update on recent progress and perspective. Materials 10(2), 198 (2017)

    Article  Google Scholar 

  12. Y.L. Pei, H. Wu, D. Wu et al., High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J. Am. Chem. Soc. 136(39), 13902–13908 (2014)

    Article  CAS  Google Scholar 

  13. C. Barreteau, D. Berardan, L. Zhao et al., Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO. J. Mater. Chem. A 1(8), 2921–2926 (2013)

    Article  CAS  Google Scholar 

  14. J.L. Lan, Y.C. Liu, B. Zhan et al., Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 96(9), 2710–2713 (2013)

    Google Scholar 

  15. J. Li, J. Sui, Y. Pei et al., The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J. Mater. Chem. A 2(14), 4903–4906 (2014)

    Article  CAS  Google Scholar 

  16. B. Feng, G. Li, Z. Pan et al., Enhanced thermoelectric performances in BiCuSeO oxyselenides via Er and 3D modulation doping. Ceram. Int. 45(4), 4493–4498 (2019)

    Article  CAS  Google Scholar 

  17. Y. Liu, L. Zhao, Y. Zhu et al., Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv. Energy Mater. 6(9), 1502423 (2016)

    Article  Google Scholar 

  18. A.P. Novitskii et al., Effect of praseodymium and lanthanum substitution for bismuth on the thermoelectric properties of BiCuSeO oxyselenides. Semiconductors 53, 215–219 (2019)

    Article  CAS  Google Scholar 

  19. A. Novitskii, G. Guélou, D. Moskovskikh et al., Reactive spark plasma sintering and thermoelectric properties of Nd-substituted BiCuSeO oxyselenides. J. Alloys Compd. 785, 96–104 (2019)

    Article  CAS  Google Scholar 

  20. Y. Wang, Y. Sui, J. Cheng et al., Influence of Y3+ doping on the high-temperature transport mechanism and thermoelectric response of misfit-layered Ca3Co4O9. Appl. Phys. A: Mater. Sci. Process. 99(2), 451–458 (2010)

    Article  CAS  Google Scholar 

  21. Y. Wang, Y. Sui, X. Wang et al., Effects of substituting La3+, Y3+ and Ce4+ for Ca2+ on the high temperature transport and thermoelectric properties of CaMnO3. J. Phys. D: Appl. Phys. 42(5), 055010 (2009)

    Article  Google Scholar 

  22. T. Jun, K. Song, Y. Jung et al., Bias stress stable aqueous solution derived Y-doped ZnO thin film transistors. J. Mater. Chem. 21(35), 13524–13529 (2011)

    Article  CAS  Google Scholar 

  23. Q.S. Meng, L.Q. Wang, B.S. Li et al., Thermoelectric properties of Y-doped Mg2Si prepared by field-activated and pressure-assisted reactive sintering. Adv. Mater. Res. 79–82, 1639–1642 (2009)

    Article  Google Scholar 

  24. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren et al., Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5), 466 (2009)

    Article  CAS  Google Scholar 

  25. J.F. Li, W.S. Liu, L.D. Zhao et al., High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2(4), 152–158 (2010)

    Article  Google Scholar 

  26. J.R. Szczech, J.M. Higgins, J. Song, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037–4055 (2011)

    Article  CAS  Google Scholar 

  27. X. Fan, X. Cai, Z. Rong et al., Resistance pressing sintering: a simple, economical and practical technique and its application to p-type (Bi, Sb)2Te3, thermoelectric materials. J. Alloys Compd. 607(24), 91–98 (2014)

    Article  CAS  Google Scholar 

  28. M. Ishizawa, Y. Yasuzato, H. Fujishiro, T. Naito, H. Katsui, T. Goto, Oxidation states and thermoelectric properties of BiCuSeO bulks fabricated under Bi or Se deficiencies in the nominal composition. J. Appl. Phys. 123, 245104 (2018)

    Article  Google Scholar 

  29. M.A. Rodriguez, R.M. Ferrizz, C.S. Snow et al., X-ray powder diffraction data for ErH2xDx. Powder Diffr. 23(3), 259–264 (2008)

    Article  CAS  Google Scholar 

  30. G.K. Ren, S.Y. Wang, Y.C. Zhu et al., Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ. Sci. 10(7), 1590–1599 (2017)

    Article  CAS  Google Scholar 

  31. H. Ohta, S.W. Kim, Y. Mune et al., Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6(2), 129–134 (2007)

    Article  CAS  Google Scholar 

  32. G.A. Slack, The thermal conductivity of nonmetallic crystals. Solid State Phys. Adv. Res. Appl. 34, 1–71 (1979)

    CAS  Google Scholar 

  33. D.T. Morelli, G.A. Slack, High lattice thermal conductivity solids, in High Thermal Conductivity Materials (Springer, New York, 2006), pp. 37–68

  34. J. Yang, G.P. Meisner, L. Chen, Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl. Phys. Lett. 85(7), 1140–1142 (2004)

    Article  CAS  Google Scholar 

  35. F. Li, J.F. Li, L.D. Zhao et al., Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci. 5(5), 7188–7195 (2012)

    Article  CAS  Google Scholar 

  36. M. Vashista, S. Paul, Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces. Philos. Mag. 92(33), 4194–4204 (2012)

    Article  CAS  Google Scholar 

  37. A.P. Zhilyaev, I. Shakhova, A. Morozova et al., Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation. Mater. Sci. Eng. A 654, 131–142 (2016)

    Article  CAS  Google Scholar 

  38. J. Mao, H. Zhu, Z. Ding et al., High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365(6452), 495–498 (2019)

    Article  CAS  Google Scholar 

  39. S.I. Kim, K.H. Lee, H.A. Mun et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230), 109–114 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51674181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi’an Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Li, G., Hu, X. et al. Enhancement of thermoelectric performances of BiCuSeO through Y doping and grain refining. J Mater Sci: Mater Electron 31, 4915–4923 (2020). https://doi.org/10.1007/s10854-020-03056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03056-9

Navigation