Skip to main content
Log in

Understanding the effect of high energy γ-radiation induced on the structural and electrical behavior of Eu3+-substituted Mg–Cd nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The nano-sized Mg1−xCdxEuyFe2−yO4 (0.0 ≤ x ≤ 1.0; y = 0.0, 0.1) ferrites are synthesized by combustion technique. All samples are subjected to γ-radiation of 60Co source with overall 310 kGy exposure dosage. The structural analysis of all the samples is done using XRD. The structural parameters of Mg–Cd–Eu nanoferrites before and after irradiation are estimated by applying Rietveld refinement to XRD data. Furthermore, the lattice parameters are found to be increasing with increase in Cd2+ ion content. The average crystallite sizes are found in the range of 12–38 nm. The morphology of the samples before and after gamma irradiations was observed by using SEM. The morphology of the samples confirms the porous nature after gamma irradiation and EDAX analysis confirms the composition details of the samples. XPS analysis of the samples confirms the oxidation state of all the elements. Dielectric constant, dielectric loss tangent, complex impedance, and AC conductivity properties are measured in the frequency range of 100 Hz–5 MHz at room temperature before and after gamma irradiation. The dielectric constants, dielectric loss tangent, and impedance increased with increasing concentration of Cd2+. The ac conductivity decreased with the increase in Cd2+ concentration. The dielectric constant and lattice parameter values have essentially decreased with substitution of Eu3+ ion and enhanced after gamma illumination because of the change of ferric particles into ferrous particles due to the ionizing impact of γ-illumination. The Cole–Cole plots reveal the existence of various electrical responses in the samples. Hence our results suggest that these materials are helpful for radio frequency application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.K. Rangolia, M.C. Chhantbar, A.R. Tanna, K.B. Modi, G.J. Bhaldha, H.H. Joshi, Indian J. Pure Appl. Phys. 46, 60–64 (2008)

    CAS  Google Scholar 

  2. I.H. Gul, W. Ahmed, A. Maqsood, J. Magn. Magn. Mater. 320, 270–275 (2008)

    CAS  Google Scholar 

  3. V.L. Mathe, R.B. Kamble, Mater. Res. Bull. 43, 2160–2165 (2008)

    CAS  Google Scholar 

  4. R. Bharamagoudar, S. Matteppanavar, A.S. Patil, V. Pattar, V. Jagadeesha Angadi, K. Manjunatha, Chem. Data. Col. 24, 100288 (2019)

    Google Scholar 

  5. J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 54, 5844–5848 (2008)

    Google Scholar 

  6. E. Melagiriyappa, H.S. Jayanna, J. Alloys Compd. 482, 147–150 (2009)

    CAS  Google Scholar 

  7. K. Manjunatha, I.C. Sathish, S.P. Kubrin, A.T. Kozakov, T.A. Lastovina, A.V. Nikolskii, K.M. Srinivasamurthy, M. Pasha, V. Jagadeesha Angadi, J. Mater. Sci. 30, 10162–10171 (2019)

    CAS  Google Scholar 

  8. M. Zhang, Z. Zi, Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, J. Dai, Adv Sci. Eng Mater. (2013). https://doi.org/10.1155/2013/609819

    Article  Google Scholar 

  9. G. Kumar, J. Shah, R.K. Kotnala, P. Dhiman, R. Rani, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Ceram. Int. 40, 14509–14516 (2014)

    CAS  Google Scholar 

  10. M.A. Ahmed, S.T. Bishay, F.A. Radwan, J. Phys. Chem. Solids 63, 279–286 (2002)

    CAS  Google Scholar 

  11. V. Jagadeesha Angadi, A.V. Anupama, R. Kumar, H.M. Somashekarappa, S. Matteppanavar, B. Rudraswamy, B. Sahoo, Ceram. Int. 43, 523–526 (2017)

    CAS  Google Scholar 

  12. A. Karim, S.E. Shirsath, S.J. Shukla, K.M. Jadhav, Nucl. Instrum. Methods Phys. Res. B 268, 2706–2711 (2010)

    CAS  Google Scholar 

  13. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Synth. J. Alloys Compd. 509, 966–972 (2011)

    CAS  Google Scholar 

  14. K.M. Srinivasamurthy, K. Manjunatha, E.I. Sitalo, S.P. Kubrin, I.C. Sathish, S. Matteppanavar, B. Rudraswamy, V. Jagadeesha Angadi, Indian J Phys. 1, 1–12 (2019). https://doi.org/10.1007/s12648-019-01495-7

    Article  CAS  Google Scholar 

  15. J. Ross Macdonald Barsoukov Evgenij, Impedance Spectroscopy: Theory, Ex- periment and Applications, 2nd edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  16. V. Jagadeesha Angadi, B. Rudraswamy, K. Sadhana, S. Ramana Murthy, K. Praveena, J. Alloys Compd. 656, 5–12 (2016)

    CAS  Google Scholar 

  17. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N. Sivasankara Reddy, V. Jagadeesha Angadi, J. Mater. Sci. 30, 17202–17217 (2019)

    CAS  Google Scholar 

  18. V.J. Angadi, A.V. Anupama, R. Kumar, H.K. Choudhary, S. Matteppanavar, H.M. Somashekarappa, B. Rudraswamy, B. Sahoo, Mater. Chem. Phys. 199, 313–321 (2017)

    CAS  Google Scholar 

  19. V. Jagadeesha Angadi, A.V. Anupama, H.K. Choudhary, R. Kumar, H.M. Somashekarappa, M. Mallappa, B. Rudraswamy, B. Sahoo, J. Solid State Chem. 246, 119–124 (2017)

    CAS  Google Scholar 

  20. K.M. Batoo, S. Kumar, C.G.L. Alimuddin, Curr. Appl. Phys. 9, 1397–1406 (2009)

    Google Scholar 

  21. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, J. Magn. Magn. Mater. 327, 159–166 (2013)

    CAS  Google Scholar 

  22. M. Penchal Reddy, R.A. Shakooran, A.M.A. Mohamed, M. Gupta, Q. Huang, Ceram. Int. 42, 4221–4227 (2016)

    CAS  Google Scholar 

  23. K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, J. Alloys Compd. 726, 179–186 (2017)

    CAS  Google Scholar 

  24. B.M. Sahanashree, E. Melagiriyappa, M. Veena, G.J. Shankaramurthy, A. Somashekarappa, H.S. Jayanna, H.M. Somashekarappa, Rad. Phys. Chem. 139, 55–65 (2017)

    CAS  Google Scholar 

  25. A. Goktas, F. Aslan, B. Yeşilata, İ. Boz, Mater. Sci. Semicond. Process. 75, 221–233 (2018)

    CAS  Google Scholar 

  26. A. Goktas, A. Tumbula, Z. Aba, M. Durgun, Thin Solid Films 680, 20–30 (2019)

    CAS  Google Scholar 

  27. A. Loganathan, K. Kumar, Appl. Nanosci. 6, 629–639 (2016)

    CAS  Google Scholar 

  28. R. Zahir, F.-U.-Z. Chowdhury, M.M. Uddin, M.A. Hakim, J. Magn. Magn. Mater. 410, 55–62 (2016)

    CAS  Google Scholar 

  29. H.R. Lakshmiprasanna, V. Jagadeesha Angadi, B. Rajesh Babu, M. Pasha, K. Manjunatha, S. Matteppanavar, Chem. Data Collect. 24, 100273 (2019)

    Google Scholar 

  30. L. Guo, X. Shen, Y. Feng, J. Alloys Compd. 490, 301–306 (2010)

    CAS  Google Scholar 

  31. V. Jagadeesha Angadi, A.V. Anupama, R. Kumar, H.M. Somashekarappac, K. Praveena, B. Rudraswamy, B. Sahoo, Ceram. Int. 42(14), 15933–15939 (2016)

    Google Scholar 

  32. V. Jagadeesha Angadi, A.V. Anupama, R. Kumar, S. Matteppanavar, B. Rudraswamy, B. Sahoo, J. Alloys Compd. 682, 263–274 (2016)

    CAS  Google Scholar 

  33. R. Paul singh, C. Venkataraju, Chin. J. Phys. 56, 2218–2225 (2018)

    Google Scholar 

  34. M.W. Thomson, (Cambridge University Press, Cambridge, 1969).

  35. N. Okasha, J. Alloys Compd. 490, 307–310 (2010)

    CAS  Google Scholar 

  36. S. Darshane, I.S. Mulla, Mater. Chem. Phys. 119, 319–323 (2010)

    CAS  Google Scholar 

  37. A. Göktaş, A. Tumbul, F. AslanGrain, J. Sol-Gel Sci. Technol. 78, 262–269 (2016)

    Google Scholar 

  38. R. Deepalaxmi, V. Rajini, J. Rad. Res. Appl. Sci. 7, 363–370 (2014)

    Google Scholar 

  39. L.-N. Feng, J. Peng, Y.-D. Zhu, L.-P. Jiang, J.-J. Zhu, Chem. Commun. 48, 4474–4476 (2012)

    CAS  Google Scholar 

  40. H.C. Swart, I.M. Nagpure, O.M. Ntwaeaborwa, G.L. Fisher, J.J. Terblans, Opt. Exp. 20, 17119 (2012)

    CAS  Google Scholar 

  41. K. Manjunatha, V. Jagadeesha Angadi, K.M. Srinivasamurthy, S. Matteppanavar, V.K. Pattar, U. Mahaboob Pasha, J. Supercond. Nov. Magn. 1, 1–11 (2020). https://doi.org/10.1007/s10948-019-05403-2

    Article  CAS  Google Scholar 

  42. M. Kaur, S. Rana, P.S. Tarsikka, Ceram. Int. 38, 4319–4323 (2012)

    CAS  Google Scholar 

  43. A. Iqbal, M.U. Islam, I. Ali, M.A. khan, I. Sadiq, I. Ali, J. Alloys Compd. 586, 404–410 (2014)

    Google Scholar 

  44. E. Melagiriyappa, H.S. Jayanna, B.K. Chougule, Mater. Chem. Phys. 112, 68–73 (2008)

    CAS  Google Scholar 

  45. K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, J. Alloys Compd. 8388(17), 32613

  46. U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016)

    CAS  Google Scholar 

  47. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, J. Alloys Compd. 492, 590–596 (2010)

    CAS  Google Scholar 

  48. K.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1873), p. 328

    Google Scholar 

  49. M. Atif, M. Nadeem, R. Grossinger, R. Sato Turtelli, J. Alloys Compd. 509, 5720–5724 (2011)

    CAS  Google Scholar 

  50. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2–3, 132–138 (1990)

    Google Scholar 

  51. M. Abdullah Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, J. Alloys Compd. 493, 553–560 (2010)

    Google Scholar 

  52. K.M. Batoo, Phys B 406, 382–387 (2011)

    CAS  Google Scholar 

  53. K.M. Batoo, J. Phys. Chem. Solids 72, 1400–1407 (2011)

    CAS  Google Scholar 

  54. H. Gencer, A. Goktas, M. Gunes, H.I. Mutlu, S. Atalay, Int. J. Mod. Phys. B 22, 497–506 (2008)

    CAS  Google Scholar 

  55. A. Goktas, I.H. Mutlu, A. Kawashi, Thin Solid Films 520, 6138–6144 (2012)

    CAS  Google Scholar 

  56. M.A. Ahmed, E. Ateia, F.M. Salem, J. Mater. Sci. 42, 3651–3660 (2007)

    CAS  Google Scholar 

  57. M. Azizar Rahman, A.K.M. Akther Hossain, Phys. Scr. 89, 8 (2014)

    Google Scholar 

  58. M. Hashim, A.S. Kumar, S.E. Shirsath, R.K. Kotnala, J. Shah, R. Kumar, Ceram. Int. 39, 1807–1819 (2013)

    CAS  Google Scholar 

  59. A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, J. Magn. Magn. Mater. 329, 59–64 (2013)

    CAS  Google Scholar 

  60. M.-R. Syuea, F.-J. Wei, C.-S. Chou, C.-M. Fu, Thin Solid Films 519, 8303–8306 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Melagiriyappa or V. Jagadeehsa Angadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhishek, M., Melagiriyappa, E., Jagadeehsa Angadi, V. et al. Understanding the effect of high energy γ-radiation induced on the structural and electrical behavior of Eu3+-substituted Mg–Cd nanoferrites. J Mater Sci: Mater Electron 31, 5077–5096 (2020). https://doi.org/10.1007/s10854-020-03055-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03055-w

Navigation