Skip to main content
Log in

Study of conduction mechanism, electrical property, and nonlinear electrical behaviors of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The conduction mechanism, electric properties, and I–V behavior of the polycrystalline Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 (BBTZN) ceramic analyzed as a function of frequency and temperature. The relaxation phenomena were studied with impedance and modulus formalism, while the conductivity mechanism was investigated using electrical conductivity. The thermal evolution of the electrical conduction was adjusted by Jonscher’s Law and explained in terms of the Correlated Barrier Hopping conduction mechanism. The nonlinear current–voltage confirmed the negative temperature coefficient of resistance comportment for our compound. The electrical behavior confirmed that the relaxation processes are of non-Debye type. The study of complex impedance suggests a poly-dispersive non-Debye-type relaxation occurring in the polycrystalline (BBTZN). The dielectric response confirmed the dominance of the Maxwell–Wagner (M–W) model effect in conduction phenomenon. The value of permittivity is highly around 103, and low dielectric loss and low electrical conductivity of around 10–4 S cm−1 for BBTZN were observed. These values make this composition interesting for microelectric applications. In the thermal study, the relaxation processes observed by electrical conductivity, impedance, and modulus are associated with singly and doubly ionized oxygen vacancies for the lower and higher temperature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.N. Mbenkum, N. Ashkenov, M. Schubert, M. Lorenz, H. Hochmuth, D. Michel, M. Grundmann, G. Wagner, Temperature-dependent dielectric and electro-optic properties of a ZnO-BaTiO3-ZnO heterostructure grown by pulsed-laser deposition. Appl. Phys. Lett. 86, 091904 (2005). https://doi.org/10.1063/1.1862778

    Article  CAS  Google Scholar 

  2. D. Lee, J. Tan, K.H. Chae, B. Jeong, A. Soon, S.J. Ahn, J. Kim, J. Moon, Chemically driven enhancement of oxygen reduction electrocatalysis in supported Perovskite oxides. J. Phys. Chem. Lett. 8, 235–242 (2016). https://doi.org/10.1021/acs.jpclett.6b02503

    Article  CAS  Google Scholar 

  3. I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, Magnetic properties of anion deficit manganites Ln0.55Ba0.45MnO3 − γ (Ln= La, Nd, Sm, Gd, γ≤ 0.37). J. Magn. Magn. Mater. 208, 217–220 (2000). https://doi.org/10.1016/S0304-8853(99)00529-6

    Article  CAS  Google Scholar 

  4. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasil'ev, A. Maignan, H. Szymczak, Critical behavior of La 0.825 Sr 0.175 MnO 2.912 anion-deficient manganite in the magnetic phase transition region. JETP Lett. 85, 507–512 (2007). https://doi.org/10.1134/S0021364007100086

    Article  CAS  Google Scholar 

  5. Y. Xue, C. He, M. Liu, J. Yuan, W. Wang, Study on the fracture behavior of the planar-type solid oxide fuel cells. J. Alloys Compd. 782, 355–362 (2019). https://doi.org/10.1016/j.jallcom.2018.12.203

    Article  CAS  Google Scholar 

  6. Y. Xue, H. Miao, B. Li, S. Sun, Q. Wang, S. Li, L. Chen, Z. Liu, Promoting effects of Ce0.75Zr0.25O2 on the La0.7Sr0.3MnO3 electrocatalyst for the oxygen reduction reaction in metal-air batteries. J. Mater. Chem. A 5, 6411 (2017). https://doi.org/10.1039/C6TA09795B

    Article  CAS  Google Scholar 

  7. Y. Xue, S. Yan, H. Huang, Z. Liu, A Nano-architectured metal-oxide/Perovskite hybrid material as electrocatalyst for the oxygen reduction reaction in aluminum-air batteries. Appl. Nano Mater. 1, 6824–6833 (2018). https://doi.org/10.1021/acsanm.8b01630

    Article  CAS  Google Scholar 

  8. K.J. Yoon, M. Biswas, H.J. Kim, M. Park et al., Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells. Nano Energy 36, 1–418 (2017)

    Article  Google Scholar 

  9. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 462, 127–135 (2018). https://doi.org/10.1016/j.jmmm.2018.05.006

    Article  CAS  Google Scholar 

  10. A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J. Alloys Compd. 788, 1193–1202 (2019). https://doi.org/10.1016/j.jallcom.2019.02.303

    Article  CAS  Google Scholar 

  11. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12 − xAlxO19 (x= 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015). https://doi.org/10.1016/j.jmmm.2015.05.076

    Article  CAS  Google Scholar 

  12. A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x≤ 2) in the wide temperature range. J. Alloys Compd. 791, 522–529 (2019). https://doi.org/10.1016/j.jallcom.2019.03.314

    Article  CAS  Google Scholar 

  13. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102–16106 (2016). https://doi.org/10.1088/1674-1056/25/1/016102

    Article  CAS  Google Scholar 

  14. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018). https://doi.org/10.1016/j.jallcom.2018.04.150

    Article  CAS  Google Scholar 

  15. T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan, Y. Lin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys. 121, 084103 (2017). https://doi.org/10.1063/1.4977107

    Article  CAS  Google Scholar 

  16. Q. Hua, L. Jin, P.S. Zelenovskiy, V.Y. Shur, Y. Zhuang, Z. Xu, X. Wei, Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3-0.1Bi (Mg1/2Ti1/2)O3 ceramic. J. Ceram. Int. 43, 12828–12834 (2017). https://doi.org/10.1016/j.ceramint.2017.06.173

    Article  CAS  Google Scholar 

  17. Z. Shen, X. Wang, B. Luo, L. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015). https://doi.org/10.1039/C5TA03614C

    Article  CAS  Google Scholar 

  18. M.N. Kamalasanan, N. Deepak Kumar, S. Chandra, Dielectric and ferroelectric properties of BaTiO3 thin films grown by the sol-gel process. J. Appl. Phys. 74, 5679 (1993). https://doi.org/10.1063/1.354183

    Article  CAS  Google Scholar 

  19. N. Zidi, A. Chaouchi, S. d’Astorg, M. Rguiti, C. Courtois, Dielectric and impedance spectroscopy characterizations of CuO added (Na0.5Bi0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. J. Alloys Comp. 590, 557–564 (2014). https://doi.org/10.1016/j.jallcom.2013.12.167

    Article  CAS  Google Scholar 

  20. T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559–566 (2015). https://doi.org/10.1111/jace.13325

    Article  CAS  Google Scholar 

  21. Z. Raddaoui, S. El Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, Study of diffuse phase transition and relaxor ferroelectric behavior of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramic. RSC Adv. 9, 2412 (2019). https://doi.org/10.1039/c8ra08910h

    Article  CAS  Google Scholar 

  22. V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Investigation of the crystal and magnetic structures of BaFe12-xAlxO19 solid solutions (x = 0.1–1.2). Crystallogr. Rep. 60, 629–635 (2015). https://doi.org/10.1134/S1063774515030220

    Article  CAS  Google Scholar 

  23. S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, Temperature evolution of the structure parameters and exchange interactions in BaFe12-xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018). https://doi.org/10.1016/j.jmmm.2018.07.041

    Article  CAS  Google Scholar 

  24. T. Roisnel, J. R. Carvajal, Computer Program FULLPROF, LLB-LCSIM (2003).

  25. S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, Thermal stability of A-site ordered PrBaMn2O6 manganites. J. Phys. Chem. Sol. 67, 675–681 (2006). https://doi.org/10.1016/j.jpcs.2005.09.099

    Article  CAS  Google Scholar 

  26. S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys. Solid State 50, 886–893 (2008). https://doi.org/10.1134/S1063783408050144

    Article  CAS  Google Scholar 

  27. B. Rolling, A. Happe, K. Phunke, M.D. Ingram, carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 78, 2160 (1997). https://doi.org/10.1103/PhysRevLett.78.2160

    Article  Google Scholar 

  28. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 477, 9–16 (2019). https://doi.org/10.1016/j.jmmm.2018.12.101

    Article  CAS  Google Scholar 

  29. H. Trabelsi, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, K. Khirouni, Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate. Phys. E Low Dimens. Syst. Nanostruct. 99, 75–81 (2018). https://doi.org/10.1016/j.physe.2018.01.019

    Article  CAS  Google Scholar 

  30. T. Badapanda, V. Senthil, S.K. Rout, S. Panigrahi, T.P. Sinha, Dielectric relaxation on Ba1-xBi2x/3Zr0.25Ti0.75O3 ceramic. Mater. Chem. Phys 133, 863–870 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.108

    Article  CAS  Google Scholar 

  31. M.B. Abdessalem, A. Aydi, N. Abdelmoula, Raman scattering, structural, electrical studies and conduction mechanism of Ba0.9Ca01Ti0.95Zr0.05O3 ceramic. J. Alloys Compd. 774, 685–693 (2019). https://doi.org/10.1016/j.jallcom.2018.10.042

    Article  CAS  Google Scholar 

  32. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44(2015), 10457–10466 (2015). https://doi.org/10.1039/C5DT00444F

    Article  CAS  Google Scholar 

  33. Z. Raddaoui, R. Lahouli, S.E.L. Kossi, J. Dhahri, K. Khirouni, K. Taibi, Effect of oxygen vacancies on dielectric properties of Ba(1–x)Nd(2x/3)TiO3 compounds. J. Alloys Compd. 771, 67–78 (2019). https://doi.org/10.1016/j.jallcom.2018.08.242

    Article  CAS  Google Scholar 

  34. S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T=Ni, Mg) ferrite nanoparticles prepared by sol gel method. J. Ceram. Int. 43, 2529–2536 (2017). https://doi.org/10.1016/j.ceramint.2016.11.055

    Article  CAS  Google Scholar 

  35. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Influence of oxygen vacancies on the magnetic and electrical properties of La1-xSrxMnO3-x/2 manganites. Eur. Phys. J. B 42, 51–61 (2004). https://doi.org/10.1140/epjb/e2004-00357-8

    Article  CAS  Google Scholar 

  36. S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil'ev, A. Maignan, H. Szymczak, Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 83, 33–36 (2006). https://doi.org/10.1134/S0021364006010085

    Article  CAS  Google Scholar 

  37. S.N. Tripathy, Z. Wojnarowska, J. Knapik, H. Shirota, R. Biswas, M. Paluch, Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: the case of (acetamide + lithium nitrate/sodium thiocyanate) melts. J. Chem. Phys. 142, 184504 (2015). https://doi.org/10.1063/1.4919946

    Article  CAS  Google Scholar 

  38. H. Lin, X. Hea, Y. Gong, D. Pang, Z. Yi, Tuning the nonlinear current-voltage behavior of CaCu3Ti4O12 ceramics by spark plasma sintering. J. Ceram. Int. 44, 8650–8655 (2018). https://doi.org/10.1016/j.ceramint.2018.02.089

    Article  CAS  Google Scholar 

  39. S.H. Yoon, S.H. Kim, D.Y. Kim, Correlation between I (current)-V (voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor. J. Appl. Phys. 114, 074102 (2013). https://doi.org/10.1063/1.4818947

    Article  CAS  Google Scholar 

  40. R. Laishram, K.C. Singh, C. Prakash, Enhanced dielectric loss of Mg doped Ba0.7Sr0.3TiO3 ceramics. J. Ceram. Int. 42, 14970–14975 (2016). https://doi.org/10.1016/j.ceramint.2016.06.141

    Article  CAS  Google Scholar 

  41. J.J. Qu, S. Li, F. Liu, C.L. Yuan, D.J. Zhou, H.L. Lia, J. Mater. Sci. Semicond. Process. 91, 239–245 (2019)

    Article  CAS  Google Scholar 

  42. G.N. Bhargavi, A. Khare, T. Badapanda, M.S. Anwar, N. Brahme, Electrical characterizations of BaZr005Ti095O3 perovskite ceramic by impedance spectroscopy, electric modulus and conductivity, effect of structures and substrate temperatures on BaZn0.06Bi0.94O3-δ perovskite-based NTC thermistor thin films. J. Mater. Sci.: Mater. Electron. 28, 16956–16964 (2017). https://doi.org/10.1007/s10854-017-7617-8

    Article  CAS  Google Scholar 

  43. S.K. Rout, A. Hussian, J.S. Lee, I.W. Kim, S.I. Woo, Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method. J. Alloys Compd. 477, 706–711 (2009). https://doi.org/10.1016/j.jallcom.2008.10.125

    Article  CAS  Google Scholar 

  44. R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique. J. Magn. Magn. Mater. 253, 56–64 (2002). https://doi.org/10.1016/S0304-8853(02)00413-4

    Article  CAS  Google Scholar 

  45. R. M’nassri, M. Khelifi, H. Rahmouni, A. Selmi, K. Khirouni, N.C. Boudjada, Study of physical properties of cobalt substituted Pr0.7Ca0.3MnO3 ceramics. J. Ceram. Int. 42, 6145–6153 (2016). https://doi.org/10.1016/j.ceramint.2016.01.001

    Article  CAS  Google Scholar 

  46. T.F. Zhang, X.G. Tang, Q.X. Liu, S.G. Lu, Y.P. Jiang, X.X. Huang, Q.F. Zhou, Oxygen-vacancy-related relaxation and conduction behavior in (Pb1-xBax)(Zr0.95Ti0.05)O3 ceramics. AIP Adv. 4, 107141 (2014). https://doi.org/10.1063/1.4900610

    Article  CAS  Google Scholar 

  47. I. Coondoo, N. Panwar, R. Vidyasagar, A.L. Kholkin, Defect chemistry and relaxation processes: effect of an amphoteric substituent in lead-free BCZT ceramics. Phys. Chem. Chem. Phys. 18, 31184–31201 (2016). https://doi.org/10.1039/C6CP06244J

    Article  CAS  Google Scholar 

  48. K. Cherif, A. Belkhla, J. Dhahri, Impedance studies of La0.6Gd0.1Sr0.3Mn0.9In01O3 manganite prepared by the sol-gel method. J. Alloys Compd. 777, 358–363 (2019). https://doi.org/10.1016/j.jallcom.2018.11.032

    Article  CAS  Google Scholar 

  49. K. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic. J. Alloys Compd. 453, 325–331 (2008). https://doi.org/10.1016/j.jallcom.2006.11.081

    Article  CAS  Google Scholar 

  50. C.L. Du, S.T. Zhang, G.X. Cheng, M.H. Lu, Z.B. Gu, J. Wang, Y.F. Chen, Composition-dependent structures and properties of Bi4Ti3-xZrxO12 ceramics. Phys B 368, 157–162 (2005). https://doi.org/10.1016/j.physb.2005.07.011

    Article  CAS  Google Scholar 

  51. F. Rehman, J.B. Li, Y.K. Dou, J.S. Zhang, Y.J. Zhao, M. Rizwan, S. Khalid, H.B. Jin, Dielectric relaxations and electrical properties of Aurivillius Bi3.5La0.5Ti2Fe0.5Nb0.5O12 ceramics. J. Alloys Compd. 654(2016), 315–320 (2016). https://doi.org/10.1016/j.jallcom.2015.07.181

    Article  CAS  Google Scholar 

  52. H. Trabelsi, M. Bejar, E. Dhahri, M.A. Valente, M.P.F. Graça, xygen-vacancy-related giant permittivity and ethanol sensing response in SrTiO3-δ ceramics. Phys. E Low Dimens. Syst. Nanostruct. 108, 317–325 (2019). https://doi.org/10.1016/j.physe.2018.12.025

    Article  CAS  Google Scholar 

  53. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram. Int. 44, 13520–13529 (2018). https://doi.org/10.1016/j.ceramint.2018.04.183

    Article  CAS  Google Scholar 

  54. S.E.L. Kossi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, Structural and electric properties of La0.7Sr0.25Na0.05Mn0.9Ti01O3 ceramics. Phys B 440, 118–123 (2014). https://doi.org/10.1016/j.physb.2014.01.016

    Article  CAS  Google Scholar 

  55. C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B 62, 228 (2000). https://doi.org/10.1103/PhysRevB.62.228

    Article  Google Scholar 

  56. P. Nayak, T. Badapanda, A.K. Singha, S. Panigrahia, An approach for correlating the structural and electrical properties of Zr4+-modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 7, 16319 (2017). https://doi.org/10.1039/C7RA00366H

    Article  CAS  Google Scholar 

  57. R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, J.R.R. Barrado, Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 426, 68–77 (2003). https://doi.org/10.1016/S0040-6090(02)01331-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafedh Belmabrouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raddaoui, Z., Lahouli, R., El Kossi, S. et al. Study of conduction mechanism, electrical property, and nonlinear electrical behaviors of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 perovskite. J Mater Sci: Mater Electron 31, 4836–4849 (2020). https://doi.org/10.1007/s10854-020-03046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03046-x

Navigation