Skip to main content
Log in

Synthesis and study of structure and phase composition in Cu2–xS, SnxSy, ZnS, CuxSnSy and CuZnSnS pellets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of pure single-phase Cu2ZnSnS4 (CZTS) has attracted much attention of some laboratories and investigation centers around the world. This is important in order to eliminate secondary phases which are detrimental to the final conversion efficiency of the CZTS solar cells. Pseudo-ternary phase diagram showed the formation of pure CZTS using the mixture of Cu2S, SnS2 and ZnS binary sulfides; nevertheless, the gap is very narrow. An additional problem lies in the effective determination of the CZTS purity, because some secondary phases display similar X-ray diffraction and Raman spectra as those of CZTS. The present work addresses a simple, fast and economical synthesis method for the preparation of some binary, ternary and CZTS pellets, which were prepared from their corresponding co-precipitated powders. These tablets can be used not only as a sputtering target but also as a precursor in a solid-state reaction. Among the various prepared compounds, Cu2−xS–SnxSy–ZnS and CuxSnSy are included and characterized to identify their presence in the CZTS pellets. From the obtained results, the usefulness of co-precipitation as a method to produce highly pure single-phase CZTS is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Taken from Ref [1])

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, Int. J. Photoenergy 2014, 11 (2014)

    Article  Google Scholar 

  2. L.V. Piskach, I.D. Olekseyuk, I.V. Dudchak, J. Alloys Compd. 368, 135–143 (2004)

    Article  Google Scholar 

  3. M. Ravindiran, C. Praveenkumar, Renew. Sustain. Energy. Rev 94, 317–329 (2018)

    Article  CAS  Google Scholar 

  4. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1, 041201 (2008)

    Article  Google Scholar 

  5. S. Guha, K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, Appl. Phys. Lett. 97, 143508 (2010)

    Article  Google Scholar 

  6. A.V. Moholkar, S.S. Shinde, A.R. Babar, K. Sim, H. Lee, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloys Compd. 509, 7439–7446 (2011)

    Article  CAS  Google Scholar 

  7. H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Phys. Status. Solidi C 6, 5 (2009)

    Article  Google Scholar 

  8. A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K. Pangan-Okimoto, S.F. Bent, Thin Solid Films 519, 2488–2492 (2011)

    Article  CAS  Google Scholar 

  9. K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Sol. Energy. Mater. Sol. Cells 95, 2855–2860 (2011)

    Article  CAS  Google Scholar 

  10. Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Phys. Status. Solidi A 206, 1525–1530 (2009)

    Article  CAS  Google Scholar 

  11. M. Lerch, A. Ritscher, J. Just, O. Dolotko, S. Schorr, J. Alloys Compd. 670, 289–296 (2016)

    Article  Google Scholar 

  12. H. Gong, Y. Wang, J. Electrochem. Soc. 158, 8 (2011)

    Article  Google Scholar 

  13. G.L. Chen, W.H. Wang, P.Y. Lin, H.L. Cai, B.W. Chen, X.J. Huang, J.M. Zhang, S.Y. Chen, Z.G. Huang, Ceram. Int 44, 18408–18412 (2018)

    Article  CAS  Google Scholar 

  14. A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, in Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, ed. by S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Elsevier, New York, 2018), pp. 122–124

    Google Scholar 

  15. R. Nagarajan, P. Kumar, Inorg. Chem 50, 9204–9206 (2011)

    Article  Google Scholar 

  16. S. Chaudhuri, S.K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, Mater. Res. Bull 42, 576–583 (2007)

    Article  Google Scholar 

  17. S.Y. Chu, H.Y. Lu, S.S. Tan, J. Cryst. Growth 269, 385–391 (2004)

    Article  Google Scholar 

  18. V.S. Raja, U. Chalapathi, Y.B.K. Kumar, S. Uthanna, Thin Solid Films 556, 61–67 (2014)

    Article  Google Scholar 

  19. G.A. Hope, C.G. Munce, G.K. Parker, S.A. Holt, Colloids. Surf A 295, 152–158 (2007)

    Article  Google Scholar 

  20. J. Serrano, A. Canterero, M. Cordona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Phys. Rev. B 69, 014301 (2004)

    Article  Google Scholar 

  21. P.A. Fernandes, P.M.P. Salomé, A.F. Cunha, J. Phys. D 43, 215403 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge to the research assistants Adolfo Tavira (X-ray measurements), Miguel Avendaño (Raman measurements) and Angel Guillén (EDS-SEM) but also Alvaro Guzmán (Laboratory technician). This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT Mexico) scholarship (336583) provided to Gómez-Solano studying at CINVESTAV-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Arias-Cerón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Solano, R.E., Arias-Cerón, J.S., Ríos-Ramírez, J.J. et al. Synthesis and study of structure and phase composition in Cu2–xS, SnxSy, ZnS, CuxSnSy and CuZnSnS pellets. J Mater Sci: Mater Electron 31, 7519–7523 (2020). https://doi.org/10.1007/s10854-020-03045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03045-y

Navigation