Skip to main content
Log in

Design of \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructures using glancing angle deposition technique for enhanced photodetection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glancing angle deposition technique was employed to fabricate \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructure on n-type Si substrate. The X-ray diffraction analysis depicts that the \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructure was polycrystalline in nature. Higher photoluminescence intensity was obtained for \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructure as compared to bare \(\text {SnO}_{2}\) nanowires, due to the higher junction area between two layers and higher electron–hole pair generation. The photodetectors fabricated using \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructure showed averagely 2.3 times higher photoresponse as compared to bare \(\text {SnO}_{2}\) nanowire photodetector at \(-2\) V. The enhanced photoresponse for \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructure was described with reference to the interface junction. A high responsivity of 16.43 A/W and high detectivity of \({2.58}\times {10}^{{12}}\) jones with noise equivalent power as low as \({1.085}\times {10}^{-12}\) W were obtained for \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructure. Moreover, the current conduction mechanism of \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructure was explained with the help of the band diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Monroy, F. Omnès, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18(4), R33 (2003)

    Article  CAS  Google Scholar 

  2. S.J. Pearton, F. Ren, B.H. Yu-Lin Wang, K.H.C. Chu, C.Y. Chang, Wantae Lim, Jenshan Lin, D.P. Norton, Recent advances in wide bandgap semiconductor biological and gas sensors. Progr. Mater. Sci. 55(1), 1–59 (2010)

    Article  Google Scholar 

  3. G. Li, Z. Li, X. Jingwei Chen, S.Q. Chen, S. Wang, X. Ying, Y. Mai, Self-powered, high-speed \(\text{ Sb }_{2}\text{ Se }_{3}\)/\(\text{ Si }\) heterojunction photodetector with close spaced sublimation processed \(\text{ Sb }_{2}\text{ Se }_{3}\) layer. J. Alloys Compd. 737, 67–73 (2018)

    Article  CAS  Google Scholar 

  4. Z. Li, P. Song, Z. Yang, Q. Wang, In situ formation of one-dimensional \(\text{ CoMoO }_{4}\)/\(\text{ MoO }_{3}\) heterojunction as an effective trimethylamine gas sensor. Ceram. Int. 44(3), 3364–3370 (2018)

    Article  CAS  Google Scholar 

  5. Y. Xie, X. Zhang, P. Ma, W. Zhijiao, L. Piao, Hierarchical \(\text{ TiO }_{2}\) photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 8(6), 2092–2101 (2015)

    Article  CAS  Google Scholar 

  6. A. Kushwaha, H. Kalita, M. Aslam, Effect of oxygen annealing on the surface defects and photoconductivity of vertically aligned zno nanowire array. World Acad. Sci. Eng. Technol. 7, 258–263 (2013)

    Google Scholar 

  7. Xiaoyang Pan, Min-Quan Yang, Fu Xianzhi, Nan Zhang, Xu Yi-Jun, Defective tio 2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5(9), 3601–3614 (2013)

    Article  CAS  Google Scholar 

  8. C. Gao, X. Li, X. Zhu, L. Chen, Y. Wang, F. Teng, Z. Zhang, H. Duan, E. Xie, High performance, self-powered uv-photodetector based on ultrathin, transparent, \(\text{ SnO }_{2}\)-\(\text{ TiO }_{2}\) core-shell electrodes. J. Alloys Compd. 616, 510–515 (2014)

    Article  CAS  Google Scholar 

  9. S. Son, S.H. Hwang, J. Chanhoi Kim, Y. Yun, J. Jang, Designed synthesis of \(\text{ IO }_{2}\)/\(\text{ TiO }_{2}\) core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5(11), 4815–4820 (2013)

    Article  CAS  Google Scholar 

  10. M. Liu, M. Shi, L. Wenjing, D. Zhu, L. Li, L. Gan, Core-shell reduced graphene oxide/\(\text{ MnO }_{x}\) carbon hollow nanospheres for high performance supercapacitor electrodes. Chem. Eng. J. 313, 518–526 (2017)

    Article  CAS  Google Scholar 

  11. R. Balaji, S. Kumar, K.L. Reddy, V. Sharma, K. Bhattacharyya, V. Krishnan, Near-infrared driven photocatalytic performance of lanthanide-doped \(\text{ NaYF }_{4}\)@\(\text{ CdS }\) core-shell nanostructures with enhanced upconversion properties. J. Alloys Compd. 724, 481–491 (2017)

    Article  CAS  Google Scholar 

  12. A. Bhunia, M.K. Singh, Y. Galvão Gobato, M. Henini, S. Datta, Experimental evidences of quantum confined 2d indirect excitons in single barrier gaas/alas/gaas heterostructure using photocapacitance at room temperature. J. Appl. Phys. 123(4), 044305 (2018)

    Article  Google Scholar 

  13. T.M. Pan, C.H. Chen, H.Y. Hsiang, H.C. Wang, J.L. Her, Comparison of structural and electrical properties of \(\text{ Er }_{2}\text{ O }_{3}\) and \(\text{ ErTi }_x\text{ O }y\) charge-trapping layers for \(I nG aZ nO\) thin-film transistor nonvolatile memory devices. IEEE Electron Device Lett. 37(2), 179–181 (2016)

    Article  CAS  Google Scholar 

  14. S. Panigrahy, J.C. Dhar, Post annealing effects on \(\text{ Er }_{2}\text{ O }_{3}\) nanowire arrays for improved photodetection. IEEE Trans. Nanotechnol. (2018). https://doi.org/10.1109/TNANO.2018.2869223

    Article  Google Scholar 

  15. S. Mondal, M.A. Ghosh, R. Piton, J.P. Gomes, J.F. Felix, Y. Galvão Gobato, H.V. Avanço Galeti, B. Choudhuri, S.M.M. Dhar Dwivedi, M. Henini et al., Investigation of optical and electrical properties of erbium-doped tio 2 thin films for photodetector applications. J. Mater. Sci.: Mater. Electron. 29(22), 19588–19600 (2018)

    CAS  Google Scholar 

  16. A. Ghosh, S.M.M.D. Dwivedi, A. Mondal, Trap-assisted enlarged photoresponsivity thin films of Er-doped In2o3. Opt. Wirel. Technol. Proc. OWT 2018(546), 57 (2018)

    Google Scholar 

  17. G.C. Deepak, N. Bhat, S.A. Shivashankar, Structural and electrical properties of \(\text{ Er }_{2}\text{ O }_{3}\) thin films deposited by rf sputtering for gate dielectric applications. ECS Trans. 6(1), 239–245 (2007)

    Article  CAS  Google Scholar 

  18. V. Senthilkumar, P. Vickraman, Structural, optical and electrical studies on nanocrystalline tin oxide (\(\text{ SnO }_\text{2 }\)) thin films by electron beam evaporation technique. J. Mater. Sci.: Mater. Electron. 21(6), 578–583 (2010)

    CAS  Google Scholar 

  19. J.C. Dhar, A. Mondal, N.K. Singh, K.K. Chattopadhyay, Enhanced photo emission from glancing angle deposited \(\text{ SiO }_{x}\)-\(\text{ TiO }_{2}\) axial heterostructure nanowire arrays. J. Appl. Phys. 113(17), 174304 (2013)

    Article  Google Scholar 

  20. G.D. Zhou, Z.S. Lu, Y.Q. Yao, G. Wang, X.D. Yang, A.K. Zhou, P. Li, B.F. Ding, Q.L. Song, Mechanism for bipolar resistive switching memory behaviors of a self-assembled three-dimensional mos2 microsphere composed active layer. J. Appl. Phys. 121(15), 155302 (2017)

    Article  Google Scholar 

  21. S.Z. Li, C.L. Gan, C.L. Hui Cai, J.G. Yuan, P.S. Lee, J. Ma, Enhanced photoluminescence of \(\text{ ZnO }\)/ \(\text{ Er }_{2}\text{ O }_{3}\) core-shell structure nanorods synthesized by pulsed laser deposition. Appl. Phys. Lett. 90(26), 263106 (2007)

    Article  Google Scholar 

  22. M.N. Islam, M.O. Hakim, Electron affinity and work function of polycrystalline Sno2 thin film. J. Mater. Sci. Lett. 5(1), 63–65 (1986)

    Article  CAS  Google Scholar 

  23. H.Y. Liu, W.H. Lin, W.C. Sun, S.Y. Wei, Y. Sheng Min, A study of ultrasonic spray pyrolysis deposited rutile-\(\text{ TiO }_{2}\)-based metal-semiconductor-metal ultraviolet photodetector. Mater. Sci. Semicond. Proc. 57, 90–94 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge SAIF NEHU, Shillong, India for TEM analysis and NCPRE LAB, IIT Bombay, India for FESEM analysis. The authors would also like to thank CSIR Jorhat, India for providing PL measurement facility, Dr. Debarun Dhar Purkayasta, Department of Physics, NIT Nagaland, India for providing optical absorption measurement facility, department of physics NIT Nagaland for providing XRD measurement facility, and National Institute of Technology Nagaland for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Chandra Dhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahy, S., Dhar, J.C. Design of \(\text {Er}_{2}\text {O}_{3}\)-capped \(\text {SnO}_{2}\) nanostructures using glancing angle deposition technique for enhanced photodetection. J Mater Sci: Mater Electron 31, 4780–4787 (2020). https://doi.org/10.1007/s10854-020-03035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03035-0

Navigation