Skip to main content
Log in

Structure, dielectric, and ferroelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics sintered at various temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ba0.85Ca0.15Zr0.1Ti0.9O3 (referred to as BCZT) ceramic powders were synthesized by the sol–gel method followed by calcining, and then the ceramics were obtained by sintering at different temperatures varied from 1200 to 1350 °C. The effects of sintering temperature on the microstructure, impedance spectroscopy, dielectric, and ferroelectric properties for BCZT ceramics have been thoroughly investigated. The pure perovskite structure and homogenous microstructure with high relative density (> 90%) for all BCZT ceramics are identified by XRD analysis and SEM measurement, and the stability is identified by the variable-temperature dielectric characterization. The impedance spectroscopy and well-defined polarization–electric field hysteresis loops for BCZT samples were detected at room temperature. In particular, the BCZT ceramic sintered at 1300 °C resulted the highest dielectric constant (εr ~ 2170), the lowest dielectric loss (tan δ ~ 0.027), and the highest grain boundary resistance (Rgb ~ 8.9 × 107 Ω cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Wei, Y. Huang et al., Optical characteristics of Er3+-doped PMN–PT transparent ceramics. Ceram. Int. 4(38), 3397–3402 (2012). https://doi.org/10.1016/j.ceramint.2011.12.051

    Article  CAS  Google Scholar 

  2. A. Ecija, K. Vidal, A. Larrañaga et al., Structure and properties of perovskites for SOFC cathodes as a function of the A-site cation size disorder. Solid State Ion. 11(235), 14–21 (2013). https://doi.org/10.1016/j.ssi.2013.01.010

    Article  CAS  Google Scholar 

  3. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 1(19), 113–126 (2007). https://doi.org/10.1007/s10832-007-9047-0

    Article  CAS  Google Scholar 

  4. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 12(25), 2693–2700 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125

    Article  CAS  Google Scholar 

  5. M.R. Panigrahi, S. Panigrahi, Diffuse phase transition and dielectric study in Ba0.95Ca0.05TiO3 ceramic. Physica B 11(405), 2556–2559 (2010). https://doi.org/10.1016/j.physb.2010.03.031

    Article  CAS  Google Scholar 

  6. X. Wang, H. Yamada, C.N. Xu, Large electrostriction near the solubility limit in BaTiO3–CaTiO3 ceramics. Appl. Phys. Lett. 2(86), 022905 (2005). https://doi.org/10.1063/1.1850598

    Article  CAS  Google Scholar 

  7. T. Maiti, R. Guo, A.S. Bhalla, The evolution of relaxor behavior in Ti4+ doped BaZrO3 ceramics. J. Appl. Phys. 11(100), 114106–114109 (2006). https://doi.org/10.1063/1.2392996

    Article  CAS  Google Scholar 

  8. Z. Yu, A. Chen, R. Guo et al., Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J. Appl. Phys. 5(92), 2655–2657 (2002). https://doi.org/10.1080/00150190902889325

    Article  CAS  Google Scholar 

  9. Z. Sun, L. Li, J. Li et al., Influence of Nb2O5 addition on dielectric properties and diffuse phase transition behavior of BaZr0.2Ti0.8O3 ceramics. Ceram. Int. 9(42), 10833–10837 (2016). https://doi.org/10.1016/j.ceramint.2016.03.212

    Article  CAS  Google Scholar 

  10. S. Ye, J. Fuh, L. Lu, Effects of Ca substitution on structure, piezoelectric properties, and relaxor behavior of lead-free Ba(Ti0.9Zr0.1)O3 piezoelectric ceramics. J. Alloys Compd. 22(541), 396–402 (2012). https://doi.org/10.1016/j.jallcom.2012.06.084

    Article  CAS  Google Scholar 

  11. H. Yu, Z.G. Ye, Dielectric properties and relaxor behavior of a new (1–x)BaTiO3–xBiAlO3 solid solution. J. Appl. Phys. 3(103), 034114–034115 (2008). https://doi.org/10.1063/1.2838479

    Article  CAS  Google Scholar 

  12. L. Zhang, X. Wang, W. Yang et al., Structure and relaxor behavior of BaTiO3–CaTiO3–SrTiO3 ternary system ceramics. J. Appl. Phys. 1(104), 1354 (2008). https://doi.org/10.1063/1.2949253

    Article  CAS  Google Scholar 

  13. A. Shukla, R.N.P. Choudhary, A.K. Thakur, Thermal, structural and complex impedance analysis of Mn modified BaTiO3 electroceramic. J. Phys. Chem. Solids 11(70), 1401–1407 (2009). https://doi.org/10.1016/j.jpcs.2009.08.015

    Article  CAS  Google Scholar 

  14. X. Wang, P. Jia, X. Wang et al., Calcining temperature dependence on structure and dielectric properties of CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater Electron. 27, 12134–12140 (2016). https://doi.org/10.1007/s10854-016-5366-8

    Article  CAS  Google Scholar 

  15. X. Wang, P. Jia, L. Sun et al., Improved dielectric properties in CaCu3Ti4O12 ceramics modified by TiO2. J. Mater. Sci.: Mater Electron. 29, 2244–2250 (2018). https://doi.org/10.1007/s10854-017-8139-0

    Article  CAS  Google Scholar 

  16. W. Bai, D. Chen, J. Zhang et al., Phase transition behavior and enhanced electromechanical properties in (Ba0.85Ca0.15)(ZrxTi1-x)O3 lead-free piezoceramics. Ceram. Int. 2(42), 3598–3608 (2016). https://doi.org/10.1016/j.ceramint.2015.11.023

    Article  CAS  Google Scholar 

  17. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 25(103), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  18. P. Wang, Y. Li, Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram. Soc. 11(31), 2005–2012 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.023

    Article  CAS  Google Scholar 

  19. D. Xue, Y. Zhou, H. Bao et al., Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. J. Appl. Phys. 5(109), 809 (2011). https://doi.org/10.1063/1.3549173

    Article  CAS  Google Scholar 

  20. D. Segal, Chemical synthesis of advanced ceramic materials. J. Mater. Chem. 8(7), 1297–1305 (1989). https://doi.org/10.1039/a700881c

    Article  Google Scholar 

  21. V. Sreenivas-Puli, A. Kumar, D.B. Chrisey et al., Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors. J. Phys. D: Appl. Phys. 39(44), 395403 (2011). https://doi.org/10.1088/0022-3727/44/39/395403

    Article  CAS  Google Scholar 

  22. Z.W. Tan, W.G. Fu, X.Y. Deng et al., Ferroelectric and piezoelectric properties of (1–x)BaTi0.8Zr0.2O3-xBa0.7Ca0.3TiO3 ceramics prepared by sol-gel technique. Adv. Mater. Res. 148, 1480–1485 (2011). https://doi.org/10.4028/www.scientific.net/AMR.148-149.1480

    Article  CAS  Google Scholar 

  23. M. Wang, R. Zuo, S. Qi et al., Synthesis and characterization of sol–gel derived (Ba, Ca)(Ti, Zr)O3 nanoparticles. J. Mater. Sci.: Mater. Electron. 3(23), 753–757 (2012). https://doi.org/10.1007/s10854-011-0484-9

    Article  CAS  Google Scholar 

  24. J.P. Praveen, K. Kumar, A.R. James et al., Large piezoelectric strain observed in sol–gel derived BZT–BCT ceramics. Curr. Appl. Phys. 3(14), 396–402 (2014). https://doi.org/10.1016/j.cap.2013.12.026

    Article  Google Scholar 

  25. X. Wang, B. Zhang, G. Shen et al., Colossal permittivity and impedance analysis of tantalum and samarium co-doped TiO2 ceramics. Ceram. Int. 43, 13349–13355 (2017). https://doi.org/10.1039/C6RA07746C

    Article  CAS  Google Scholar 

  26. X. Wang, B. Zhang, L. Xu et al., Dielectric properties of Y and Nb co-doped TiO2 ceramics. Sci. Rep. 7, 8517 (2017). https://doi.org/10.1038/s41598-017-09141-0

    Article  CAS  Google Scholar 

  27. X. Wang, B. Zhang, L. Sun et al., Colossal dielectric properties in (Ta0.5Al0.5)xTi1-xO2 ceramics. J. Alloys Compd. 745, 856–862 (2018). https://doi.org/10.1016/j.jallcom.2018.02.159

    Article  CAS  Google Scholar 

  28. J. Khemprasit, B. Khumpaitool, Influence of Cr doping on structure and dielectric properties of LixCryNi1−x−yO ceramics. Ceram. Int. 1(41), 663–669 (2015). https://doi.org/10.1016/j.ceramint.2014.08.119

    Article  CAS  Google Scholar 

  29. L.N. Gao, S.N. Song, J.W. Zhai et al., Effects of buffer layers on the orientation and dielectric properties of Ba(Zr0.20Ti0.80)O3 thin films prepared by sol–gel method. J. Cryst. Growth 6(310), 1245–1249 (2008). https://doi.org/10.1016/j.jcrysgro.2007.12.015

    Article  CAS  Google Scholar 

  30. S.B. Li, C.B. Wang, L. Li et al., Effect of annealing temperature on structural and electrical properties of BCZT ceramics prepared by plasma activated sintering. J. Alloys Compd. 730, 182–190 (2018). https://doi.org/10.1016/j.jallcom.2017.09.310

    Article  CAS  Google Scholar 

  31. M. Sindhu, N. Ahlawat, S. Sanghi et al., Effect of Zr substitution on phase transformation and dielectric properties of Ba0.9Ca0.1TiO3 ceramics. J. Appl. Phys. 16(114), 3850 (2013). https://doi.org/10.1063/1.4825123

    Article  CAS  Google Scholar 

  32. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 9(41), 11436–11444 (2015). https://doi.org/10.1016/j.ceramint.2015.05.107

    Article  CAS  Google Scholar 

  33. J. Rani, K.L. Yadav, S. Prakash, Structural, dielectric and optical properties of sol–gel synthesized 0.55Ba(Zr0.2Ti0.8)O3–0.45(Ba0.7Ca0.3)TiO3 ceramic. Appl. Phys. A 3(117), 1131–1137 (2014). https://doi.org/10.1007/s00339-014-8482-4

    Article  CAS  Google Scholar 

  34. V.S. Puli, D.K. Pradhan, D.B. Chrisey et al., Structure, dielectric, ferroelectric, and energy density properties of (1–x)BZT–xBCT ceramic capacitors for energy storage applications. J. Mater. Sci. 5(48), 2151–2157 (2013). https://doi.org/10.1007/s10853-012-6990-1

    Article  CAS  Google Scholar 

  35. X. Wang, B. Zhang, L. Shi et al., Dielectric relaxation behavior and energy storage properties in Ba1-x(Bi0.5K0.5)xTi0.85Zr0.15O3 ceramics. J. Alloys Compd. 789, 983–990 (2019). https://doi.org/10.1016/j.materresbull.2019.02.004

    Article  CAS  Google Scholar 

  36. Q. Jin, Pu Yong-Ping, C. Wang et al., Enhanced energy storage performance of Ba0.4Sr0.6TiO3 ceramics: influence of sintering atmosphere. Ceram. Int. 43, S232–S238 (2017). https://doi.org/10.1016/j.ceramint.2017.05.229

    Article  CAS  Google Scholar 

  37. W. Xia, N. Zhang, H. Yang et al., Energy storage BaZr0.2Ti0.8O3 bilayer relaxor ferroelectric ceramic thick films with high discharging efficiency and fatigue resistance. J. Alloys Compd. 19, 30804–30807 (2019). https://doi.org/10.1016/j.jallcom.2019.02.332

    Article  CAS  Google Scholar 

  38. T. Qi, D. Viehland, Grain size dependence of relaxor characteristics in La-modified lead zirconate titanate. Ferroelectrics 1(193), 157–165 (1997). https://doi.org/10.1080/00150199708228329

    Article  Google Scholar 

  39. C.J. Huang, K. Li, S.Y. Wu et al., Variation of ferroelectric hysteresis loop with temperature in (SrxBa1-x)Nb2O6 unfilled tungsten bronze ceramics. J. Materiomics 2(1), 146–152 (2015). https://doi.org/10.1016/j.jmat.2015.02.004

    Article  Google Scholar 

  40. H.X. Yan, F. Inam, G. Viola et al., The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1(01), 107–118 (2011). https://doi.org/10.1142/S2010135X11000148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Key Scientific Research Foundation in Henan Province (No. 19B430005), the National Natural Science Foundation of China (Nos. 51402091, 51601059, 11847136), the Special Scientific Research Foundation in Henan Normal University (No. 20180543), and the National University Student Innovation Program (No. 20160098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.W., Zhang, B.H., Li, Y.Y. et al. Structure, dielectric, and ferroelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics sintered at various temperatures. J Mater Sci: Mater Electron 31, 4732–4742 (2020). https://doi.org/10.1007/s10854-020-03030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03030-5

Navigation