Skip to main content
Log in

Improved dielectric properties in CaCu3Ti4O12 ceramics modified by TiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fabrication of TiO2 modified CaCu3Ti4O12 (w = 0, 0.01, 0.1, 2%) ceramics were obtained by a sol–gel process. The influence of TiO2 amount on the microstructures and dielectric properties was studied. The results indicate that TiO2 modified CaCu3Ti4O12 ceramics exhibits higher density, more obvious grain boundaries, and larger grains, and show improved dielectric properties, including colossal permittivity (~ 104) and comparably low dielectric loss (~ 0.1–2.3) at room temperature over the frequency range from 100 Hz to 1 MHz. The colossal permittivity could be explained by an internal boundary layer capacitance effect. CaCu3Ti4O12 modified with w = 0.01% TiO2 shows improved dielectric constant (~ 6.81 × 104) and low dielectric loss (~ 0.12) at room temperature and 1 kHz, and it also exhibits good performance over a broad temperature from 20 to 200 °C. The results show that TiO2 modification can make an improvement in both microstructures and dielectric properties for CaCu3Ti4O12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.L. Tan, H.H. Sheng, Multiferroic La0.2Pb0.7Fe12O19 ceramics: ferroelectricity, ferromagnetism and colossal magneto-capacitance effect. Data Brief 10, 69–74 (2017). doi:10.1016/j.dib.2016.11.067

    Article  Google Scholar 

  2. G.L. Song, Y.C. Song, J. Su, X.H. Song, N. Zhang, T.X. Wang, F.G. Chang, Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+ modified BiFeO3 multiferroic material. J. Alloys Compd. 696, 503–509 (2017). doi:10.1016/j.jallcom.2016.11.155

    Article  Google Scholar 

  3. S. Lather, A. Gupta, J. Dalal, V. Verma, R. Tripathi, A. Ohlan, Effect of mechanical milling on structural, dielectric and magnetic properties of BaTiO3–Ni0.5Co0.5Fe2O4 multiferroic nanocomposites. Ceram. Int. 43(3), 3246–3251 (2017). doi:10.1016/j.ceramint.2016.11.152

    Article  Google Scholar 

  4. P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, Influence of sintering conditions on microstructure and electrical properties of CaCu3Ti4O12 (CCTO) ceramics. J. Alloys Compd. 650, 59–64 (2015). doi:10.1016/j.jallcom.2015.07.247

    Article  Google Scholar 

  5. L.M. Jesus, J.C.A. Santos, D.V. Sampaio, L.B. Barbosa, R.S. Silva, J.C. M’Peko, Polymeric synthesis and conventional versus laser sintering of CaCu3Ti4O12 electroceramics: (micro)structures, phase development and dielectric properties. J. Alloys Compd. 654, 482–490 (2016). doi:10.1016/j.jallcom.2015.09.027

    Article  Google Scholar 

  6. T. Li, H.F. He, T. Zhang, B. Zhao, Z.Q. Chen, H.Y. Dai, R.Z. Xue, Z.P. Chen, Effect of synthesizing temperatures on the microstructure and electrical property of CaCu3Ti4O12 ceramics prepared by sol-gel process. J. Alloys Compd. 684, 315–321 (2016). doi:10.1016/j.jallcom.2016.05.177

    Article  Google Scholar 

  7. J.Q. Wang, X. Huang, X.H. Zheng, D.P. Tang, Structure and electric properties of CaCu3Ti4O12 ceramics prepared by rapid sintering. J. Mater. Sci.: Mater. Electron. 27(2), 1345–1349 (2015). doi:10.1007/s10854-015-3895-1

    Google Scholar 

  8. M. Xiao, H. Huang, Effects of temperature and Ti-nonstoichiometry on electric properties of CaCu3Ti4O12 thin films. J. Mater. Sci.: Mater. Electron. 27(12), 12550–12556 (2016). doi:10.1007/s10854-016-5806-5

    Google Scholar 

  9. J. Zhao, J. Liu, G. Ma, Preparation, characterization and dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 38(2), 1221–1225 (2012). doi:10.1016/j.ceramint.2011.08.052

    Article  Google Scholar 

  10. L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju, Sol–gel synthesized pure CaCu3Ti4O12 with very low dielectric loss and high dielectric constant. Ceram. Int. 41(10), 13486–13492 (2015). doi:10.1016/j.ceramint.2015.07.140

    Article  Google Scholar 

  11. R. Kumar, M. Zulfequar, T.D. Senguttuvan, Structural and impedance spectroscopic studies of spark plasma sintered CaCu3Ti4O12 dielectric ceramics: an evidence of internal resistive barrier effect. J. Mater. Sci.: Mater. Electron. 27(5), 5233–5237 (2016). doi:10.1007/s10854-016-4418-4

    Google Scholar 

  12. Z. Liu, G. Jiao, X. Chao, Z. Yang, Preparation, microstructure, and improved dielectric and nonlinear electrical properties of Na1/2La1/2Cu3Ti4O12 ceramics by sol–gel method. Mater. Res. Bull. 48(11), 4877–4883 (2013). doi:10.1016/j.materresbull.2013.06.056

    Article  Google Scholar 

  13. D. Xu, K. He, B. Chen, C. Xu, S. Mu, L. Jiao, X. Sun, Y. Yang, Microstructure and electric characteristics of AETiO3 (AE = Mg, Ca, Sr) doped CaCu3Ti4O12 thin films prepared by the sol–gel method. Prog. Nat. Sci.: Mater. Int. 25(5), 399–404 (2015). doi:10.1016/j.pnsc.2015.09.015

    Article  Google Scholar 

  14. C. Wang, W. Ni, D. Zhang, X. Sun, J. Wang, H. Li, N. Zhang, Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range. J. Electroceram. 36(1–4), 46–57 (2016). doi:10.1007/s10832-016-0024-3

    Article  Google Scholar 

  15. A.K. Thomas, K. Abraham, J. Thomas, K.V. Saban, Structural and dielectric properties of A- and B-sites doped CaCu3Ti4O12 ceramics. Ceram. Int. 41(8), 10250–10255 (2015). doi:10.1016/j.ceramint.2015.04.138

    Article  Google Scholar 

  16. L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, H. Peng, Influence of Zirconium doping on microstructure and dielectric properties of CaCu3Ti4O12 synthesized by the sol–gel method. J. Alloys Compd. 651, 283–289 (2015). doi:10.1016/j.jallcom.2015.08.111

    Article  Google Scholar 

  17. X. Ouyang, M. Habib, P. Cao, S. Wei, Z. Huang, W. Zhang, W. Gao, Enhanced extrinsic dielectric response of TiO2 modified CaCu3Ti4O12 ceramics. Ceram. Int. 41(10), 13447–13454 (2015). doi:10.1016/j.ceramint.2015.07.133

    Article  Google Scholar 

  18. Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, High dielectric and nonlinear electrical behaviors in TiO2-modified CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88(17), 172902 (2006). doi:10.1063/1.2198479

    Article  Google Scholar 

  19. H. Yu, H. Liu, H. Hao, D. Luo, M. Cao, Dielectric properties of CaCu3Ti4O12 ceramics modified by SrTiO3. Mater. Lett. 62(8–9), 1353–1355 (2008). doi:10.1016/j.matlet.2007.08.052

    Article  Google Scholar 

  20. X.W. Wang, P.B. Jia, X.E. Wang, B.H. Zhang, L.Y. Sun, Q.B. Liu, Calcining temperature dependence on structure and dielectric properties of CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 27(11), 12134–12140 (2016). doi:10.1007/s10854-016-5366-8

    Google Scholar 

  21. A. Nautiyal, C. Autret, C. Honstettre, S. De Almeida-Didry, M. El Amrani, S. Roger, B. Negulescu, A. Ruyter, Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu3–yMgy)Ti4O12 ceramics: importance of the potential barrier at the grain boundary. J. Eur. Ceram. Soc. 36(6), 1391–1398 (2016). doi:10.1016/j.jeurceramsoc.2015.12.035

    Article  Google Scholar 

  22. M.M. Ahmad, Giant dielectric constant in CaCu3Ti4O12 nanoceramics. Appl. Phys. Lett. 102(23), 232908 (2013). doi:10.1063/1.4811154

    Article  Google Scholar 

  23. T. Fang, L. Mei, H. Ho, Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta Mater. 54(10), 2867–2875 (2006). doi:10.1016/j.actamat.2006.02.037

    Article  Google Scholar 

  24. D.P. Singh, Y.N. Mohapatra, D.C. Agrawal, Dielectric and leakage current properties of sol–gel derived calcium copper titanate (CCTO) thin films and CCTO/ZrO2 multilayers. Mater. Sci. Eng. B 157(1–3), 58–65 (2009). doi:10.1016/j.mseb.2008.12.017

    Article  Google Scholar 

  25. M. Nath, A. Roy, Interfacial and electrical properties of radio frequency sputtered ultra-thin TiO2 film for gate oxide applications. J. Mater. Sci.: Mater. Electron. 26(11), 9107–9116 (2015). doi:10.1007/s10854-015-3598-7

    Google Scholar 

  26. B.C. Luo, D.Y. Wang, M.M. Duan, S. Li, Growth and characterization of lead-free piezoelectric BaZr0.2Ti0.8O3–Ba0.7Ca0.3TiO3 thin films on Si substrates. Appl. Surf. Sci. 270, 377–381 (2013). doi:10.1016/j.apsusc.2013.01.033

    Article  Google Scholar 

  27. L. Singh, U.S. Rai, K.D. Mandal, Dielectric, modulus and impedance spectroscopic studies of nanostructured CaCu2.70Mg0.30Ti4O12 electro-ceramic synthesized by modified sol–gel route. J. Alloys Compd. 555, 176–183 (2013). doi:10.1016/j.jallcom.2012.12.023

    Article  Google Scholar 

  28. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32(12), 3313–3323 (2012). doi:10.1016/j.jeurceramsoc.2012.03.040

    Article  Google Scholar 

  29. S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, Modulus spectroscopy of CaCu3Ti4O12 ceramics: clues to the internal barrier layer capacitance mechanism. RSC Adv. 3(19), 7030 (2013). doi:10.1039/c3ra40216a

    Article  Google Scholar 

  30. Y. Li, P. Liang, X. Chao, Z. Yang, Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol–gel technique. Ceram. Int. 39(7), 7879–7889 (2013). doi:10.1016/j.ceramint.2013.03.049

    Article  Google Scholar 

  31. P. Liang, Z. Yang, X. Chao, Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics. J. Alloys Compd. 678, 273–283 (2016). doi:10.1016/j.jallcom.2016.03.294

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Nos. 51402091, 51601059, 11304082 and 11404102), the scientific research foundation for newly graduated PhD students in Henan Normal University (No. 11114), and the National University Student Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.W., Jia, P.B., Sun, L.Y. et al. Improved dielectric properties in CaCu3Ti4O12 ceramics modified by TiO2 . J Mater Sci: Mater Electron 29, 2244–2250 (2018). https://doi.org/10.1007/s10854-017-8139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8139-0

Navigation