Skip to main content

Advertisement

Log in

Growth and mechanical properties of intermetallic compound between solid cobalt and molten tin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transient liquid phase (TLP) bonding has gained attention due to the advantage of producing bond that has a higher melting point than the bonding temperature. Cobalt (Co) is a potential candidate for base metal in TLP bond. This work studied the interfacial reaction in binary cobalt–tin (Co–Sn) system, growth kinetics and mechanical properties of Co–Sn intermetallic compound (IMC) for transient liquid phase (TLP) joints. Dipping method was employed for the investigation of Co–Sn IMC growth. Solid Co was immersed into molten Sn statically at varying temperatures (250–300 °C) and durations (15–60 min). The IMC formed was characterized by field emission scanning electron microscope (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) tests and nanoindentation. The results showed the formation of a CoSn3 layer with plate-like morphology at temperature range of 250–300 °C. The thickness of the CoSn3 layer increases with dipping temperature and duration. The growth of CoSn3 is suggested to be controlled by only diffusion reaction at 250 °C. As temperature increases to 300 °C, the growth of CoSn3 is controlled by chemical reaction. The average nanohardness and Young’s modulus of CoSn3 phase reported in this work are 4.25 ± 0.6 GPa and 98.30 ± 9.0 GPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Agarwal, W. Zhang, P. Limaye, W. Ruythooren, High density Cu–Sn TLP bonding for 3D integration. In Electronic Components and Technology Conference, 2009 ECTC 2009. 59th. IEEE

  2. J. Li, P. Agyakwa, C. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Mater. 58(9), 3429–3443 (2010)

    Article  CAS  Google Scholar 

  3. J. Li, P. Agyakwa, C. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)

    Article  CAS  Google Scholar 

  4. A. Lis, M.S. Park, R. Arroyave, C. Leinenbach, Early stage growth characteristics of Ag3Sn intermetallic compounds during solid–solid and solid–liquid reactions in the Ag–Sn interlayer system: experiments and simulations. J. Alloy Compd. 617, 763–773 (2014)

    Article  CAS  Google Scholar 

  5. D. Jung, A. Sharma, M. Mayer, J. Jung, A review on recent advances in transient liquid phase (TLP) bonding for thermoelectric power module. Rev. Adv. Mater. Sci. 53(2), 147–160 (2018)

    Article  CAS  Google Scholar 

  6. G. Humpston, D.M. Jacobson, Principles of soldering (ASM International, Ohio, 2004)

    Google Scholar 

  7. B.-S. Lee, S.-K. Hyun, J.-W. Yoon, Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. 28(11), 7827–7833 (2017)

    CAS  Google Scholar 

  8. S.W. Yoon, M.D. Glover, K. Shiozaki, Nickel–tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles. IEEE Trans. Power Electron. 28(5), 2448–2456 (2013)

    Article  Google Scholar 

  9. Z. Lai, X. Kong, Q. You, X. Cao, Microstructure and mechanical properties of Co/Sn-10Bi couple and Co/Sn-10Bi/Co joint. Microelectron. Reliab. 68, 69–76 (2017)

    Article  CAS  Google Scholar 

  10. S. Tian, J. Zhou, F. Xue, R. Cao, F. Wang, Microstructure, interfacial reactions and mechanical properties of Co/Sn/Co and Cu/Sn/Cu joints produced by transient liquid phase bonding. J. Mater. Sci. 29(19), 16388–16400 (2018)

    CAS  Google Scholar 

  11. G. Vakanas, O. Minho, B. Dimcic, K. Vanstreels, B. Vandecasteele, I. De Preter, J. Derakhshandeh, K. Rebibis, M. Kajihara, I. De Wolf, Formation, processing and characterization of Co–Sn intermetallic compounds for potential integration in 3D interconnects. Microelectron. Eng. 140, 72–80 (2015)

    Article  CAS  Google Scholar 

  12. H. Okamoto, Co–Sn (Cobalt–Tin). J. Phase Equilib. Diffus. 27(3), 308 (2006)

    Article  CAS  Google Scholar 

  13. C.-H. Wang, S.-W. Chen, Cruciform pattern formation in Sn/Co couples. J. Mater. Res. 22(12), 3404–3409 (2007)

    Article  CAS  Google Scholar 

  14. T. Laurila, A. Paul, Understanding the growth of interfacial reaction product layers between dissimilar materials. Crit. Rev. Solid State Mater. Sci. 41(2), 73–105 (2015)

    Article  Google Scholar 

  15. W. Zhu, J. Wang, H. Liu, Z. Jin, W. Gong, The interfacial reaction between Sn–Ag alloys and Co substrate. Mater. Sci. Eng. A 456(1–2), 109–113 (2007)

    Article  Google Scholar 

  16. W. Zhu, H. Liu, J. Wang, Z. Jin, Formation of intermetallic compound (IMC) between Sn and Co substrate. J. Alloy Compd. 456(1–2), 113–117 (2008)

    Article  CAS  Google Scholar 

  17. C.-H. Wang, C.-Y. Kuo, S.-E. Huang, P.-Y. Li, Temperature effects on liquid-state Sn/Co interfacial reactions. Intermetallics 32, 57–63 (2013)

    Article  Google Scholar 

  18. N. Odashima, O. Minho, M. Kajihara, Formation of intermetallic compounds and microstructure evolution due to isothermal reactive diffusion at the interface between solid Co and liquid Sn. J. Electron. Mater. 49(2), 1568–1576 (2020)

    Article  CAS  Google Scholar 

  19. P. Ratchev, R. Labie, E. Beyne, Nanohardness study of CoSn/sub 2/intermetallic layers formed between CO UBM and Sn flip-chip solder joints. in Electronics Packaging Technology Conference, 2004. EPTC 2004. Proceedings of 6th. IEEE (2004)

  20. Y. Goh, Y.S. Goh, E.L. Lee, M.T. Ong, A. Haseeb, Formation and characterization of intermetallic compounds in electroplated cobalt–tin multilayers. J Mater Sci: Mater Electron 29(7), 5791–5798 (2018)

    CAS  Google Scholar 

  21. W.F. Smith, J. Hashemi, Foundations of materials science and engineering (McGraw-Hill, New York, 2011)

    Google Scholar 

  22. V. Dybkov, V. Khoruzha, V. Sidorko, K. Meleshevich, A. Samelyuk, D. Berry, K. Barmak, Interfacial interaction of solid cobalt with liquid Pb-free Sn–Bi–In–Zn–Sb soldering alloys. J. Mater. Sci. 44(22), 5960–5979 (2009)

    Article  CAS  Google Scholar 

  23. A. Lang, W. Jeitschko, Two new phases in the system cobalt-tin: the crystal structures of α-and β-CoSn 3. Zeitschrift für Metallkunde. 87(10), 759–764 (1996)

    CAS  Google Scholar 

  24. B.-J. Lee, N.M. Hwang, H.M. Lee, Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation. Acta Mater. 45(5), 1867–1874 (1997)

    Article  CAS  Google Scholar 

  25. O.M. Abdelhadi, L. Ladani, IMC growth of Sn-3.5 Ag/Cu system: combined chemical reaction and diffusion mechanisms. J. Alloy Compd. 537, 87–99 (2012)

    Article  CAS  Google Scholar 

  26. L. Zhang, Z.-Q. Liu, Inhibition of intermetallic compounds growth at Sn–58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm). J. Mater. Sci. 1–15 (2020)

  27. S. Li, F. Xin, L. Li, Reaction engineering (Butterworth-Heinemann, Oxford, 2017)

    Google Scholar 

  28. Y. Takamatsu, M. Kajihara, Kinetics of solid-state reactive diffusion between Co and Sn. Mater. Trans. 55(7), 1058–1064 (2014)

    Article  Google Scholar 

  29. F. Gao, F. Cheng, H. Nishikawa, T. Takemoto, Characterization of Co–Sn intermetallic compounds in Sn–3.0 Ag–0.5 Cu–0.5 Co lead-free solder alloy. Mater. Lett. 62(15), 2257–2259 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (FP014-2015A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Goh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E.L., Goh, Y. & Haseeb, A.S.M.A. Growth and mechanical properties of intermetallic compound between solid cobalt and molten tin. J Mater Sci: Mater Electron 31, 4554–4562 (2020). https://doi.org/10.1007/s10854-020-03006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03006-5

Navigation