Skip to main content
Log in

Formation of Intermetallic Compounds and Microstructure Evolution due to Isothermal Reactive Diffusion at the Interface Between Solid Co and Liquid Sn

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Co has been studied extensively by many research groups as an alternative material for underbump metallization, since Co–Sn compounds show better mechanical properties than Cu–Sn compounds. Information on reactive diffusion at the solid/liquid interface is considerably important to form mechanically and electrically reliable solder joints. In the present study, the kinetics of the reactive diffusion between solid Co and liquid Sn was experimentally examined using semiinfinite Co/Sn diffusion couples prepared by an isothermal bonding technique. Isothermal annealing of the diffusion couple was conducted at temperatures in the range of 523 K to 583 K for various times up to 96 h. An intermetallic layer formed at the original Co/Sn interface in the diffusion couple during annealing. One or two intermetallic compounds among α-CoSn3, β-CoSn3, and CoSn2 were identified, depending on the annealing temperature. The total thickness of the intermetallic layer was proportional to a power function of the annealing time. The overall growth rate of the intermetallic layer did not increase with increasing annealing temperature but was dependent on the kind of compound formed at the interface. The overall growth rate at 583 K was much slower than at lower annealing temperatures, since two compounds (CoSn2 and CoSn3) were identified at the interface, while only CoSn3 formed at 523 K to 563 K. This indicates that the interdiffusion coefficient of CoSn2 is much smaller than that of CoSn3. Based on the exponent of the power function and the microstructure evolution at the moving interface, the layer growth of the compounds was controlled by volume diffusion with spheroidal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Vakanas, M. O, B. Dimcic, K. Vanstreels, B. Vandecasteele, I. De Preter, J. Derakhshandeh, K. Rebibis, M. Kajihara, I. De Wolf, and E. Beyne, Microelectron. Eng. 140, 72 (2015).

  2. M. O, T. Suzuki and M. Kajihara, J. Electron. Mater. 47, 18 (2018).

  3. R. Labie, W. Ruythooren, and J. Van Humbeeck, Intermetallics 15, 396 (2007).

    Article  CAS  Google Scholar 

  4. T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Sci. Eng. A 396, 115 (2005).

    Article  Google Scholar 

  5. S. Kumar, C.A. Handwerker, and M.A. Dayananda, J. Phase Equilib. Diff. 32, 309 (2011).

    Article  CAS  Google Scholar 

  6. M. O, G. Vakanas, N. Moelans, M. Kajihara, and W. Zhang, Microelectron. Eng. 120, 133 (2014).

  7. M. O, Y. Takamatsu and M. Kajihara, Mater. Trans. 55, 1058 (2014).

    Article  Google Scholar 

  8. S. Tian, J. Zhou, F. Xue, R. Cao, and F. Wang, J. Mater. Sci.: Mater. Electron. 29, 16388 (2018).

    CAS  Google Scholar 

  9. C. Wang, C. Kuo, S. Huang, and P. Li, Intermetallics 32, 57 (2013).

    Article  Google Scholar 

  10. C. Wang and S. Chen, Intermetallics 16, 524 (2008).

    Article  CAS  Google Scholar 

  11. A. Nakane, T. Suzuki, M. O, and M. Kajihara, Mater. Trans. 57, 838 (2016).

    Article  CAS  Google Scholar 

  12. P. Yang, Y. Lai, S. Jian, and J. Chen, in EPTC Conference Proceedings (2007), pp 1.

  13. D.K. Misra, A. Bhardwaj, and S. Singh, J. Mater. Chem. 2, 11913 (2014).

    Article  CAS  Google Scholar 

  14. R. Labie, P. Ratchev, and E. Beyne, in ECTC Conference Proceedings (2005), pp 449.

  15. G.P. Vassilev, K.I. Lilova, and J.C. Gachon, Intermetallics 15, 1156 (2007).

    Article  CAS  Google Scholar 

  16. H. Okamoto, J. Phase Equilib. Diff. 27, 308 (2006).

    Article  CAS  Google Scholar 

  17. M. Kajihara, Acta Mater. 52, 1193 (2004).

    Article  CAS  Google Scholar 

  18. A. Lang and W. Jeitschko, Z. Metallkd. 87, 759 (1996).

    CAS  Google Scholar 

  19. A. Yakymovych, I. Shtablavyi, and S. Mudry, J. Alloys Compd. 610, 438 (2014).

    Article  CAS  Google Scholar 

  20. Y. Takamatsu, M. O, and M. Kajihara, Mater. Trans. 58, 567 (2017).

    Article  CAS  Google Scholar 

  21. Y. Takamatsu, M. O, and M. Kajihara, Mater. Trans. 58, 16 (2017).

    Article  CAS  Google Scholar 

  22. Y. Yato and M. Kajihara, Mater. Sci. Eng. A 428, 276 (2006).

    Article  Google Scholar 

  23. C. Wang and C. Kuo, J. Electron. Mater. 39, 1303 (2010).

    Article  CAS  Google Scholar 

  24. W. Zhu, H. Liu, J. Wang, and Z. Jin, J. Alloys Compd. 456, 113 (2008).

    Article  CAS  Google Scholar 

  25. Y. Tang, S.M. Luo, Z.H. Li, C.J. Hou, and G.Y. Li, J. Electron. Mater. 47, 5913 (2018).

    Article  CAS  Google Scholar 

  26. K. Meguro, M.O, and M. Kajihara, J. Mater. Sci. 47, 4955 (2012).

  27. G.P. Ivantsov, Dokl. Akad. Nauk. S.S.S.R. 58, 567 (1947).

  28. G. Horvay and J.W. Cahn, Acta Metall. 9, 695 (1961).

    Article  CAS  Google Scholar 

  29. R. Trivedi, Acta Metall. 18, 287 (1970).

    Article  CAS  Google Scholar 

  30. P.E.J. Rivera-Díaz-del-Castillo and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 25 (2001).

  31. P.E.J. Rivera-Díaz-del-Castillo and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 30 (2001).

  32. A. Furuto and M. Kajihara, Mater. Trans. 49, 294 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minho O.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odashima, N., O, M. & Kajihara, M. Formation of Intermetallic Compounds and Microstructure Evolution due to Isothermal Reactive Diffusion at the Interface Between Solid Co and Liquid Sn. J. Electron. Mater. 49, 1568–1576 (2020). https://doi.org/10.1007/s11664-019-07845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07845-9

Keywords

Navigation