Skip to main content
Log in

Defects, electronic properties, and α particle energy spectrum response of the Cd0.9Mn0.1Te: V single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium manganese telluride is a promising material for fabricating room-temperature nuclear radiation detectors widely used in medical imaging, environmental protection, nuclear security detection, astrophysics, and so on. The Cd0.9Mn0.1Te: V (V: CMT) crystal examined in this work was grown through the Te solution (10% excess) vertical Bridgman method. The low-temperature photoluminescence (PL) spectra indicated that the grown crystal has good quality. A simultaneous thermal excitation current spectrum was used to characterize the effect of vanadium doping on the level defects in the crystal. The current–voltage and Hall test results showed that the crystal resistivity was (3.781–6.185) × 1010 Ω cm. The conductivity was of n type. The carrier concentration was (1.69–9.94) × 106 cm−3. The Hall mobility was (3.08–9.29) × 103 cm−2 V−1 s−1. The maximum measured ratio of the light and dark currents, when the crystal was exposed to 5 mW white light, was 11. In addition, the room-temperature electron mobility-lifetime product of the middle sample was 6.925 × 10−4 cm2 V−1 using the 241Am@5.48 MeV α particle source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, R.B. James, Mater. Sci. Eng. 32, pp. 103–189, (2001).

    Article  Google Scholar 

  2. J. Zhang, L. Wang, J. Min, J. Huang, X. Liang, K. Tang, P. Shen, M. Shen, W. Liang, N. Huang, Y. Xia, Phys. Status Solidi C11, pp. 1174–1177, (2014).

    Article  Google Scholar 

  3. S. Sen, J.E. Stannard, Prog. Cryst. Growth Charact. 29, pp. 253–273, (1994).

    Article  CAS  Google Scholar 

  4. G. Yang, W. Jie, T. Wang, G. Li, W. Li, H. Hua, Cryst. Growth Des. 7, pp. 435–438, (2007).

    Article  CAS  Google Scholar 

  5. Y. Du, W. Jie, T. Wang, X. Zheng, Y. Xu, L. Luan, J. Cryst. Growth 355, pp. 33–37, (2012).

    Article  CAS  Google Scholar 

  6. A. Hossain, Y. Cui, A.E. Bolotnikov, G.S. Camarda, G. Yang, D. Kochanowska, M. Witkowska-Baran, A. Mycielski, R.B. James, J. Electron. Mater. 38, pp. 1593–1599, (2009).

    Article  CAS  Google Scholar 

  7. Kim K, Jeng G, Kim P, Choi J, Bolotnikov AE, Camarda GS, James RB (2013) J. Appl. Physiol. 114

  8. G. Yang, W. Jie, Q. Zhang, J. Mater. Res. 21, pp. 1807–1809, (2006).

    Article  CAS  Google Scholar 

  9. J. Zhang, L. Wang, J. Min, J. Huang, K. Qin, X. Liang, K. Tang, L. Peng, J. Alloys Compd. 509, pp. 4201–4204, (2011).

    Article  CAS  Google Scholar 

  10. G. Li, X. Zhang, W. Jie, Semicond. Sci. Technol. 20, pp. 86–89, (2005).

    Article  Google Scholar 

  11. M.J.M. Pavlović, H. Zorc, Z. Medunić, J. Appl. Physiol. 104, p. 023525, (2008).

    Article  Google Scholar 

  12. M.P.A.U.V. Desnica, J. Appl. Physiol. 84, p. 2018, (1998).

    Article  Google Scholar 

  13. Fu X, Xu Y, Gu Y, Jia N, Xu L, Zha G, Wang T, Jie W (2017) J. Appl. Physiol. 122

  14. T. Wang, X. Ai, Z. Yin, Q. Zhao, B. Zhou, F. Yang, L. Xu, G. Zha, W. Jie, CrystEngComm 21(16), pp. 2620–2625, (2019).

    Article  CAS  Google Scholar 

  15. G. Raji Soundararajan, A. Lynn Kelvin, S. Salah, S. Csaba, Wei, J. Electron. Mater. 35, pp. 1333–1340, (2006).

    Article  Google Scholar 

  16. J.M. Francou, K. Saminadayar, J.L. Pautrat, Phys. Rev. B 41(17), pp. 12035–12046, (1990).

    Article  CAS  Google Scholar 

  17. S.H. Wei, S.B. Zhang, Phys. Rev. B. 66(15), p. 155211, (2002).

    Article  Google Scholar 

  18. A. Zerrai, K. Cherkaoui, G. Marrakchi, G. Bremond, P. Fougeres, M. Hage-Ali, J.M. Koebel, P. Siffert, J. Cryst. Growth. 197(3), pp. 646–649, (1999).

    Article  CAS  Google Scholar 

  19. A. Cavallini, B. Fraboni, W. Dusi, M. Zanarini, J. Appl. Physiol. 94, pp. 3135–3142, (2003).

    Article  CAS  Google Scholar 

  20. A. Zerrai, M. Dammak, G. Marrakchi, G. Brémond, R. Triboulet, Y. Marfaing, J. Cryst. Growth 197(3), pp. 729–732, (1999).

    Article  CAS  Google Scholar 

  21. Wang P, Nan R, Jian Z (2017) J. Semicond. 38

  22. P.F. Wang, R.H. Nan, Z.Y. Jian, J. Mater. Sci. 28, pp. 5568–5573, (2016).

    Google Scholar 

  23. P.F.A. Zumbiehl, M. Hage-Ali, J.M. Koebel, P. Siffert, A. Zerrai, K. Cherkaoui, G. Marrakchi, G. Bremond, J. Cryst. Growth 197, pp. 670–674, (1999).

    Article  CAS  Google Scholar 

  24. C. Szeles, IEEE Trans. Nucl. Sci. 51, pp. 1242–1249, (2004).

    Article  CAS  Google Scholar 

  25. Y. Du, W. Jie, X. Zheng, T. Wang, X. Bai, H. Yu, Trans. Nonferrous Met. Soc. China. 22, pp. 143–147, (2012).

    Article  Google Scholar 

  26. J. Lai, J. Zhang, Y. Mao, L. Lin, J. Min, X. Liang, J. Huang, K. Tang, L. Wang, J. Electron. Mater. 47, pp. 4219–4225, (2018).

    Article  CAS  Google Scholar 

  27. Yu P, Chen Y, Li W, Liu W, Liu B, Yang J, Ni K, Luan L, Zheng J, Li Z, Bai M, Sun G, Li H, Jie W (2018) Crystals 8

  28. L. Luan, J. Zhang, T. Wang, W. Jie, Z. Liu, J. Cryst. Growth 459, pp. 124–128, (2017).

    Article  CAS  Google Scholar 

  29. J.-H. Kim, H. Kim, K. Cho, S. Kim, Solid State Commun. 136, pp. 220–223, (2005).

    Article  CAS  Google Scholar 

  30. A. Badawi, N. Al-Hosiny, S. Abdallah, H. Talaat, Mater. Sci. 31, pp. 6–13, (2012).

    Google Scholar 

  31. A. Larabi, G. Merad, I. Abdelaoui, A. Sari, Solid State Commun. 239, pp. 44–48, (2016).

    Article  CAS  Google Scholar 

  32. R.B. James, K.A. Jones, A. Burger, G. Ciampi, C.E. Skrip, L.A. Franks, K.G. Lynn, Proc. SPIE. 6706, p. 670607, (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the State Key Laboratory (in Northwestern Polytechnical University) of Solidification Processing for supplying the experimental equipment and test facilities. This work was financially supported by the National Natural Science Foundations of China (Nos. 51402022 and 51602026) and the Natural Science Basic Research Plan in Shaanxi (No. 2017 JM5129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Luan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, L., He, Y., Zheng, D. et al. Defects, electronic properties, and α particle energy spectrum response of the Cd0.9Mn0.1Te: V single crystal. J Mater Sci: Mater Electron 31, 4479–4487 (2020). https://doi.org/10.1007/s10854-020-02996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02996-6

Navigation