Skip to main content

Investigation of Charge Transport Properties and the Role of Point Defects in CdZnTeSe Room Temperature Radiation Detectors

  • Chapter
  • First Online:
High-Z Materials for X-ray Detection

Abstract

The unparalleled crystal growth yield (˃90%) of quaternary wide bandgap semiconductor Cd1-xZnxTe1-ySey (CZTS) has established it as the economical substitute of CdZnTe (CZT) for room temperature radiation detection in applications of immense importance such as medical imaging, homeland security, and nuclear non-proliferation. Addition of small amount (2–3 at. %) of selenium (Se) in the CZT matrix has been reported to modify the Zn segregation coefficient to unity and lower the sub-grain boundary network concentration substantially, leading to remarkable improvements in the radial as well as axial compositional homogeneity. Additionally, lower concentrations of tellurium inclusions, a major charge trapping center, have been reported to enhance the charge transport properties in the CZTS single crystals. In this chapter, we report the growth of high resistivity detector grade Cd0.9 Zn0.1 Te0.97 Se0.03 single crystals using modified vertical Bridgman method (VBM) and vertical gradient freeze (VGF) method which has consistently shown high (˃1200 cm2/Vs) electron drift mobility. Density functional theory (DFT) calculations have indicated that the probability of formation of 〖Te〗_Cd^(++) antisites, a potential electron trap center in CZT, is lowered due to their higher formation energy in the CZTS single crystals. Photoinduced current transient spectroscopic (PICTS) measurements have been conducted to corroborate with the theoretical results and study the role of such electron trap centers in defining the electron mobility in CZTS. Finally, the radiation response of the CZTS detectors has been compared and correlated with the type and concentration of the point defects observed through the PICTS measurements in the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlesinger, T. E., Toney, J. E., Yoon, H., Lee, E. Y., Brunett, B. A., Franks, L., & James, R. B. (2001). Cadmium zinc telluride and its use as a nuclear radiation detector material. Materials Science and Engineering, 32, 103–189.

    Article  Google Scholar 

  2. Szeles, C. (2004). CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Physica Status Soldi B, 241, 783–790.

    Article  Google Scholar 

  3. McGregor, D. S., He, Z., Seifert, H. A., Rojeski, R. A., & Wehe, D. K. (1998). CdZnTe semiconductor parallel strip Frisch grid radiation detectors. IEEE Transactions on Nuclear Science, 45, 443–449.

    Article  Google Scholar 

  4. Bell, S. J., Baker, M. A., Duarte, D. D., Schneider, A., Seller, P., Sellin, P. J., Veale, M. C., & Wilson, M. D. (2017). Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition. Journal of Instrumentation, 12, 06015.

    Article  Google Scholar 

  5. Berrett, H. H., Eskin, J. D., & Barber, H. B. (1995). Charge transport in arrays of semiconductor gamma-ray detectors. Physical Review Letters, 75, 156–159.

    Article  Google Scholar 

  6. Luke, P. N. (1998). Single-polarity charge sensing in ionization detectors using coplanar electrodes. Applied Physics Letters, 65, 2884–2886.

    Article  Google Scholar 

  7. Del Sordo, S., Abbene, L., Caroli, E., Mancini, A. M., Zappettini, A., & Ubertini, P. (2009). Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 9, 3491–3526.

    Article  Google Scholar 

  8. Chaudhuri, S. K., & Mandal, K. C.(2022). In: Iniewski K. (ed.) Advanced materials for radiation detection, pp. 211–234. Springer, Cham.

    Google Scholar 

  9. Abbene, L., Gerardi, G., Principato, F., Buttacavoli, A., Altieri, S., Protti, N., Tomarchio, E., Del Sordo, S., Auricchio, N., Bettelli, M., Amadè, N. S., Zanettini, S., & Zappettini, A. (2020). Recent advances in the development of high-resolution 3D cadmium–zinc–telluride drift strip detectors. Journal of Synchrotron Radiation, 27, 1564–1576.

    Article  Google Scholar 

  10. Abbene, L., Principato, F., Gerardi, G., Buttacavoli, A., Cascio, D., Battelli, M., Amadè, N. S., Seller, P., Veale, M. C., Fox, O., Sawhney, K., Zanettini, S., Tomarchio, E., & Zappettini, A. (2020). Room-temperature X-ray response of cadmium–zinc–telluride pixel detectors grown by the vertical Bridgman technique. Journal of Synchrotron Radiation, 27, 319–328.

    Article  Google Scholar 

  11. Esserman, L. (2020). We need more evidence to answer questions about screening. Nature, 579, S5.

    Article  Google Scholar 

  12. Iniewski, K. (2014). CZT detector technology for medical imaging. Journal of Instrumentation, 9, C11001.

    Article  Google Scholar 

  13. Chaudhuri, S. K., Nguyen, K., Pak, R. O., Matei, L., Buliga, V., Groza, M., Burger, A., & Mandal, K. C. (2014). Large area Cd0.9Zn0.1Te pixelated detector: Fabrication and characterization. IEEE Transactions on Nuclear Science, 61, 793–798.

    Article  Google Scholar 

  14. Knoll, G. F. (2000). Radiation detection and measurements (3rd ed.). Wiley.

    Google Scholar 

  15. Fougeres, P., Siffert, P., Hageali, M., Koebel, J. M., & Regal, R. (1999). CdTe and Cd1−xZnxTe for nuclear detectors: Facts and fictions. Nuclear Instruments and Methods in Physics Research A, 428, 38–44.

    Article  Google Scholar 

  16. Cavallini, A., Fraboni, B., Castaldini, A., Marchini, L., Zambelli, N., Benassi, G., & Zappettini, A. (2013). Defect characterization in fully encapsulated CdZnTe. IEEE Transactions on Nuclear Science, 60, 2870–2871.

    Article  Google Scholar 

  17. Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Cui, Y., Li, L., & James, R. B. (2007). Cumulative effects of Te precipitates in CdZnTe radiation detectors. Nuclear Instruments and Methods in Physics Research A, 571, 687–698.

    Article  Google Scholar 

  18. Roy, U. N., Camarda, G. S., Cui, Y., Gul, R., Yang, G., Zazvorka, J., Dedic, V., Franc, J., & James, R. B. (2019). Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Scientific Reports, 9, 7303.

    Article  Google Scholar 

  19. Mandal, K. C., Kang, S. H., Choi, M., Bello, J., Zheng, L., Zhang, H., Groza, M., Roy, U. N., Burger, A., Jellison, G. E., Holcomb, D. E., Wright, G. W., & Williams, J. A. (2006). Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers. Journal of Electronic Materials, 35, 1251–1256.

    Article  Google Scholar 

  20. Mandal, K. C., Kang, S. H., Choi, M., Kargar, A., Harrison, M. J., McGregor, D. S., Bolotnikov, A. E., Carini, G. A., Camarda, G. C., & James, R. B. (2007). Characterization of low-defect Cd0.9Zn0.1Te and CdTe crystals for high-performance Frisch collar detectors. IEEE Transactions on Nuclear Science, 54, 802–806.

    Article  Google Scholar 

  21. Mandal, K. C., Krishna, R. M., Muzykov, P. G., & Hayes, T. C. (2012). Fabrication and characterization of high barrier Cd0.9Zn0.1Te Schottky diodes for high resolution nuclear radiation detectors. IEEE Transactions on Nuclear Science, 59, 1504–1509.

    Article  Google Scholar 

  22. Krishna, R. M., Muzykov, P. G., & Mandal, K. C. (2013). Electron beam induced current imaging of dislocations in Cd0.9Zn0.1Te crystal. Journal of Physics and Chemistry of Solids, 74, 170–173.

    Article  Google Scholar 

  23. Pak, R. O., & Mandal, K. C. (2015). Defect levels in nuclear detector grade Cd0.9Zn0.1Te crystals. ECS Journal of Solid State Science and Technology, 5, P3037–P3040.

    Article  Google Scholar 

  24. Chaudhuri, S. K., Krishna, R. M., Zavalla, K. J., Matei, L., Buliga, V., Groza, M., Burger, A., & Mandal, K. C. (2013). Cd0.9Zn0.1Te crystal growth and fabrication of large volume single-polarity charge sensing gamma detectors. IEEE Transactions on Nuclear Science, 60, 2853–2858.

    Article  Google Scholar 

  25. Krishna, R. M., Chaudhuri, S. K., Zavalla, K. J., & Mandal, K. C. (2013). Characterization of Cd0.9Zn0.1Te based virtual Frisch grid detectors for high energy gamma ray detection. Nuclear Instruments and Methods in Physics Research A, 701, 208–213.

    Article  Google Scholar 

  26. Chaudhuri, S. K., Zavalla, K. J., Krishna, R. M., & Mandal, K. C. (2013). Biparametric analyses of charge trapping in Cd0.9Zn0.1Te based virtual Frisch grid detectors. Journal of Applied Physics, 113, 074504.

    Article  Google Scholar 

  27. Chaudhuri, S. K., Kleppinger, J. W., Karadavut, O. F., Nag, R., & Mandal, K. C. (2021). Quaternary semiconductor Cd1-xZnxTe1-ySey for high-resolution, room-temperature gamma-ray detection. Crystals, 11, 827.

    Article  Google Scholar 

  28. Chaudhuri, S. K., Sajjad, M., Kleppinger, J. W., & Mandal, K. C. (2020). Charge transport properties in CdZnTeSe semiconductor room-temperature γ-ray detectors. Journal of Applied Physics, 127, 245706.

    Article  Google Scholar 

  29. Yakimov, A., Smith, D., Choi, J., & Araujo, S. (2019). Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique. Proceedings of SPIE, 1114, 11141N.

    Google Scholar 

  30. Egarievwe, S. U., Roy, U. N., Agbalagba, E. O., Harrison, B. A., Goree, C. A., Savage, E. K., & James, R. B. (2020). Optimizing CdZnTeSe Frisch-grid nuclear detector for gamma-ray spectroscopy. IEEE Access, 8, 137530–137539.

    Article  Google Scholar 

  31. Pipek, J., Betušiak, M., Belas, E., Grill, R., Praus, P., Musiienko, A., Pekarek, J., Roy, U. N., & James, R. B. (2021). Charge transport and space-charge formation in Cd1−xZnxTe1−ySey radiation detectors. Physical Review Applied, 15, 054058.

    Article  Google Scholar 

  32. Roy, U. N., Camarda, G. S., Cui, Y., & James, R. B. (2021). Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications. Applied Physics Letters, 118, 152101.

    Article  Google Scholar 

  33. Hwang, S., Yu, H., Bolotnikov, A. E., James, R. B., & Kim, K. (2019). Anomalous Te inclusion size and distribution in CdZnTeSe. IEEE Transactions on Nuclear Science, 66, 2329–2332.

    Article  Google Scholar 

  34. Roy, U. N., Camarda, G. S., Cui, Y., Gul, R., Hossain, A., Yang, G., Zazvorka, J., Dedic, V., Franc, J., & James, R. B. (2019). Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Scientific Reports, 9, 1620.

    Article  Google Scholar 

  35. Roy, U. N., Camarda, G., Cui, Y., Yang, G., & James, R. B. (2021). Impact of selenium addition to the cadmium zinc telluride matrix for producing high energy resolution X and gamma ray detectors. Scientific Reports, 11, 10338.

    Article  Google Scholar 

  36. Kleppinger, J. W., Chaudhuri, S. K., Roy, U. N., James, R. B., & Mandal, K. C. (2021). Growth of Cd0.9Zn0.1Te1-ySey single crystals for room temperature gamma-ray detection. IEEE Transactions on Nuclear Science, 68, 2429–2434.

    Article  Google Scholar 

  37. Gul, R., Roy, U. N., Camarda, G. S., Hossain, A., Yang, G., Vanier, P., Lordi, V., Varley, J., & James, R. B. (2017). A comparison of point defects in Cd1-xZnxTe1-ySey crystals grown by Bridgman and traveling heater methods. Journal of Applied Physics, 121, 125705.

    Article  Google Scholar 

  38. Chaudhuri, S. K., Sajjad, M., & Mandal, K. C. (2020). Pulse-shape analysis in Cd0.9Zn0.1Te0.98Se0.02 room-temperature radiation detectors. Applied Physics Letters, 116, 162107.

    Article  Google Scholar 

  39. Rejhon, M., Franc, J., Dědič, V., Pekárek, J., Roy, U. N., Grill, R., & James, R. B. (2018). Influence of deep levels on the electrical transport properties of CdZnTeSe detectors. Journal of Applied Physics, 124, 235702.

    Article  Google Scholar 

  40. Chaudhuri, S. K., Sajjad, M., Kleppinger, J. W., & Mandal, K. C. (2020). Correlation of space charge limited current and γ-ray response of CdxZn1−xTe1−ySey room-temperature radiation detectors. IEEE Electron Device Letters, 41, 1336–1339.

    Article  Google Scholar 

  41. Rejhon, M., Dědič, V., Beran, L., Roy, U. N., Franc, J., & James, R. B. (2019). Investigation of deep levels in CdZnTeSe crystal and their effect on the internal electric field of CdZnTeSe gamma-ray detector. IEEE Transactions on Nuclear Science, 66, 1952–1958.

    Article  Google Scholar 

  42. Chaudhuri, S. K., Kleppinger, J. W., Karadavut, O., Nag, R., Panta, R., Agostinelli, F., Sheth, A., Roy, U. N., James, R. B., & Mandal, K. C. (2022). Synthesis of CdZnTeSe single crystals for room temperature radiation detector fabrication: Mitigation of hole trapping effects using a convolutional neural network. Journal of Materials Science: Materials in Electronics, 33, 1452–1463.

    Google Scholar 

  43. Soundararajan, R., & Lynn, K. G. (2012). Effects of excess tellurium and growth parameters on the band gap defect levels in CdxZn1−xTe. Journal of Applied Physics, 112, 073111.

    Article  Google Scholar 

  44. Yang, G., Jie, W., Li, Q., Wang, T., Li, G., & Hua, H. (2005). Effects of In doping on the properties of CdZnTe single crystals. Journal of Crystal Growth, 283, 431–437.

    Article  Google Scholar 

  45. Harrison, M. J., Graebner, A. P., McNeil, W. J., & McGregor, D. S. (2006). Carbon coating of fused silica ampoules. Journal of Crystal Growth, 290, 597–601.

    Article  Google Scholar 

  46. Nag, R., Chaudhuri, S. K., Kleppinger, J. W., Karadavut, O., & Mandal, K. C. (2021). Characterization of vertical Bridgman grown Cd0.9Zn0.1Te0.97Se0.03 single crystal for room-temperature radiation detection. Journal of Materials Science: Materials in Electronics, 32, 26740–26749.

    Google Scholar 

  47. Nag, R., Chaudhuri, S. K., Kleppinger, J. W., Karadavut, O., & Mandal, K. C. (2022). Vertical gradient freeze growth of detector grade CdZnTeSe single crystals. Journal of Crystal Growth, 596, 126826.

    Article  Google Scholar 

  48. Bolotnikov, A. E., Abdul-Jaber, N. M., Babalola, O. S., Camarda, G. S., Cui, Y., Hossain, A. M., Jackson, E. M., Jackson, H. C., James, J. A., Kohman, K. T., Luryi, A. L., & James, R. B. (2008). Effects of Te inclusions on the performance of CdZnTe radiation detectors. IEEE Transactions on Nuclear Science, 55, 2757–2764.

    Article  Google Scholar 

  49. Brovko, A., Amzallag, O., Adelberg, A., Chernyak, L., Raja, P. V., & Ruzin, A. (2021). Effects of oxygen plasma treatment on Cd1−xZnxTe material and devices. Nuclear Instruments and Methods in Physics Research B, 1004, 165343.

    Article  Google Scholar 

  50. Sajjad, M., Chaudhuri, S. K., Kleppinger, J. W., & Mandal, K. C. (2020). Growth of large-area Cd0.9Zn0.1Te single crystals and fabrication of pixelated guard-ring detector for room-temperature γ-ray detection. IEEE Transactions on Nuclear Science, 67, 1946–1951.

    Article  Google Scholar 

  51. Hecht, K. (1932). Zum mechanismus des lichtelektrischen primärstromes in isolierenden kristallen. Zeitschrift für Physik, 77, 235–245.

    Article  Google Scholar 

  52. Sellin, P. J., Davies, A. W., Lohstroh, A., Ozsan, M. E., & Parkin, J. (2005). Drift mobility and mobility-lifetime products in CdTe:Cl grown by the travelling heater method. IEEE Transactions on Nuclear Science, 52, 3074–3078.

    Article  Google Scholar 

  53. Zhang, S. B., Wei, S. H., Zunger, A., & Katayama-Yoshida, H. (1998). Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B, 57, 9642–9656.

    Article  Google Scholar 

  54. Freysoldt, C., Neugebauer, J., & Van de Walle, C. G. (2009). Fully ab initio finite-size corrections for charged-defect supercell calculations. Physical Review Letters, 102, 016402.

    Article  Google Scholar 

  55. Perdew, J. P., Ernzerhof, M., & Burke, K. (1996). Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105, 9982–9985.

    Article  Google Scholar 

  56. Lang, D. V. (1974). Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. Journal of Applied Physics, 45, 3023–3032.

    Article  Google Scholar 

  57. Tapiero, M., Benjelloun, N., Zielinger, J. P., El Hamd, S., & Noguet, C. (1988). Photoinduced current transient spectroscopy in high-resistivity bulk materials: Instrumentation and methodology. Journal of Applied Physics, 64, 4006–4012.

    Article  Google Scholar 

  58. Hurtes, C., Boulou, M., Mitonneau, A., & Bois, D. (2008). Deep-level spectroscopy in high-resistivity materials. Applied Physics Letters, 32, 821.

    Article  Google Scholar 

  59. Mandal, K. C., Muzykov, P. G., Chaudhuri, & Terry, J. R. (2013). Low energy X-ray and γ-ray detectors fabricated on n-type 4H-SiC epitaxial layer. IEEE Transactions on Nuclear Science, 60, 2888–2893.

    Article  Google Scholar 

  60. Mandal, K. C., Kleppinger, J. W., & Chaudhuri, S. K. (2020). Advances in high-resolution radiation detection using 4H-SiC epitaxial layer devices. Micromachines, 11(3), 254.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the DOE Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP), Grant No. DE-NE0008662. The work was also partially supported by the Advanced Support Program for Innovative Research Excellence-I (ASPIRE-I) of the University of South Carolina (UofSC), Columbia, Grant No. 15530-E419 and 155312 N1600 and by Los Alamos National Laboratory/DOE (Grant No. 143479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna C. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhuri, S.K., Nag, R., Kleppinger, J.W., Mandal, K.C. (2023). Investigation of Charge Transport Properties and the Role of Point Defects in CdZnTeSe Room Temperature Radiation Detectors. In: Abbene, L., Iniewski, K.(. (eds) High-Z Materials for X-ray Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-20955-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20955-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20954-3

  • Online ISBN: 978-3-031-20955-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics