Skip to main content
Log in

Surfactant-assisted hydrothermally synthesized novel TiO2/SnS@Pd nano-composite: structural, morphological and photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To meet the increasing demand of energy and to conquer the waste water problems, fabrication of visibly active semiconductor materials is demand of the present world. In this paper, we have synthesized the surfactant-assisted novel TiO2/SnS@Pd by adopting the energy-efficient hydrothermal approach and the photocatalytic activity of the synthesized composites were tested by taking the Rhodamine B (RhB) as the model pollutant. The structural, optical, morphological and compositional properties were elaborated using the various characterization techniques. X-ray photoelectron spectroscopy and high-resolution transmission electron microscope were used to find out the formation of ternary composites. The formation of heterojunction and red shift in the absorption of the ternary composite were the rationale behind the highest photocatalytic activity of sample containing the 4% SnS and 2% Pd for the removal of RhB. The complete removal of pollutant was achieved only in 30 min using the ternary composite. It was also found that the binary samples exhibited the maximum removal of dye in the basic medium while the ternary composite exhibited the maximum removal of dye in neutral medium because of leaching of Pd in alkaline medium. The role of active species towards the degradation of dye was also studied. The synthesized materials are highly beneficial for the fabrication or development of cost-effective device for the waste water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.N. Ravishankar, M.O. Vaz, T. Ramakrishnappa, S.R. Teixeira, J. Dupont, R.K. Pai, G. Banuprakash, J. Mater. Sci. Mater. Electron. 29, 11132 (2018)

    Article  CAS  Google Scholar 

  2. V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, Front. Mater. Sci. 13, 1 (2019)

    Article  Google Scholar 

  3. A. Mittal, S. Sharma, V. Kumari, S. Yadav, N.S. Chauhan, N. Kumar, J. Mater. Sci. Mater. Electron. 30, 17933 (2019)

    Article  CAS  Google Scholar 

  4. Y. Jiang, Z. Yang, P. Zhang, H. Jin, Y. Ding, RSC Adv. 8, 13408 (2018)

    Article  CAS  Google Scholar 

  5. Y. Jia, F. Yang, F. Cai, C. Cheng, Y. Zhao, Electron. Mater. Lett. 9, 287 (2013)

    Article  CAS  Google Scholar 

  6. A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, N. Kumar, J. Mater. Sci. Mater. Electron. 30, 3186 (2019)

    Article  CAS  Google Scholar 

  7. N. Kumar, N.S. Chauhan, A. Mittal, S. Sharma, Biometals 31, 147 (2018)

    Article  CAS  Google Scholar 

  8. X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Appl. Catal. B 202, 620 (2017)

    Article  CAS  Google Scholar 

  9. H. Yun, B. Park, Y.C. Choi, J. Im, T.J. Shin, S.I. Seok, Adv. Energy Mater. 9, 1901343 (2019)

    Article  Google Scholar 

  10. Y. Wang, H. Gong, B. Fan, G. Hu, J. Phys. Chem. C 114, 3256 (2010)

    Article  CAS  Google Scholar 

  11. W. Zhang, X. Xiao, X. Zeng, Y. Li, L. Zheng, C. Wan, J. Alloys Compds 685, 774 (2016)

    Article  CAS  Google Scholar 

  12. K.C. Christoforidis, A. Sengele, V. Keller, N. Keller, ACS Appl. Mater. Interfaces 7, 19324 (2015)

    Article  CAS  Google Scholar 

  13. E. Murugan, K. Kumar, Anal. Chem. 91, 5667 (2019)

    Article  CAS  Google Scholar 

  14. S.-C. Zhu, H.-C. Tao, X.-L. Yang, L.-L. Zhang, S.-B. Ni, Ionics 21, 2735 (2015)

    Article  CAS  Google Scholar 

  15. S. Zhang, L. Yue, H. Zhao, Z. Wang, J. Mi, Mater. Lett. 209, 212 (2017)

    Article  CAS  Google Scholar 

  16. J. Gomes, A. Lopes, K. Bednarczyk, M. Gmurek, M. Stelmachowski, A. Zaleska-Medynska, M. Quinta-Ferreira, R. Costa, R. Quinta-Ferreira, R. Martins, Chem. Eng. 2, 4 (2018)

    Google Scholar 

  17. R. Kaur, B. Pal, N. J. Chem. 39, 5966 (2015)

    Article  CAS  Google Scholar 

  18. A. Merenda, M. Weber, M. Bechelany, F.-M. Allioux, L. Hyde, L. Kong, L.F. Dumée, Appl. Surf. Sci. 483, 219 (2019)

    Article  CAS  Google Scholar 

  19. A.Y.S. Malkhasian, K. Narasimharao, RSC Adv. 7, 55633 (2017)

    Article  CAS  Google Scholar 

  20. A.H. Keihan, H. Rasoulnezhad, A. Mohammadgholi, S. Sajjadi, R. Hosseinzadeh, M. Farhadian, G. Hosseinzadeh, J. Mater. Sci. Mater. Electron. 28, 16718 (2017)

    Article  CAS  Google Scholar 

  21. X. Xin, X. Zhou, J. Wu, X. Yao, Z. Liu, ACS Nano 6, 11035 (2012)

    Article  CAS  Google Scholar 

  22. M. Leng, Y. Chen, J. Xue, Nanoscale 6, 8531 (2014)

    Article  CAS  Google Scholar 

  23. J. Hu, H. Li, Q. Wu, Y. Zhao, Q. Jiao, Chem. Eng. J. 263, 144 (2015)

    Article  CAS  Google Scholar 

  24. D. Zhao, C.-F. Yang, Renew. Sustain. Energy Rev. 54, 1048 (2016)

    Article  CAS  Google Scholar 

  25. J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, Eur. Phys. J. Appl. Phys. 61, 10301 (2013)

    Article  Google Scholar 

  26. Q. Chen, H. Liu, Y. Xin, X. Cheng, Chem. Eng. J. 241, 145 (2014)

    Article  CAS  Google Scholar 

  27. X. Zhang, Y. Gao, L. Nengzi, B. Li, J. Gou, X. Cheng, Sep. Purif. Technol. 228, 115742 (2019)

    Article  CAS  Google Scholar 

  28. C. Gao, H. Shen, L. Sun, H. Huang, L. Lu, H. Cai, Mater. Lett. 64, 2177 (2010)

    Article  CAS  Google Scholar 

  29. N. Verma, S. Yadav, B. Marí, A. Mittal, J. Jindal, Trans. Indian Ceram. Soc. 77, 1 (2018)

    Article  CAS  Google Scholar 

  30. E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, A. Etcheberry, C. Colbeau-Justin, H. Remita, J. Phys. Chem. C 117, 1955 (2013)

    Article  CAS  Google Scholar 

  31. P. Mpungose, Z. Vundla, G. Maguire, H. Friedrich, Molecules 23, 1676 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

CSIR, New Delhi, India is acknowledged by AM for giving the financial support in the form of SRF. MRC, MNIT Jaipur, India is also acknowledged for the microscopic analysis.

Funding

This study was supported by Council of Scientific and Industrial Research, India (Grant No. 09/382(0177)/2019-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest from the author’s side.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A., Sharma, S., Kumar, T. et al. Surfactant-assisted hydrothermally synthesized novel TiO2/SnS@Pd nano-composite: structural, morphological and photocatalytic activity. J Mater Sci: Mater Electron 31, 2010–2021 (2020). https://doi.org/10.1007/s10854-019-02720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02720-z

Navigation