Skip to main content
Log in

Dy-doped BiFeO3-PbFeO3-based piezoelectric ceramics for nondestructive testing ultrasonic transducer applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.63[0.9BiFeO3–0.1DyFeO3]–0.37PbTiO3 (BDF-PT) multiferroic ceramics with large piezoelectric response (d33 = 88 pC/N) and high Curie temperature (TC = 420 °C) were fabricated around the morphotropic phase boundary through traditional solid-state reaction method. The phase symmetry, microstructure, ferroelectricity and piezoresponse of BDF-PT ceramics were characterized systematically. Based on its high Curie temperature and appropriate piezoelectric properties, the BDF-PT ceramic was used to fabricate nondestructive testing ultrasonic transducer. The Krimholtz, Leedom and Matthaei (KLM) model was applied to design the ultrasonic transducer. The transducer fabricated was characterized to have a center frequency of 7 MHz and a low insertion loss of − 13 dB. This transducer was utilized to test metal stacks with different thicknesses; the experimental results show that the BDF-PT ceramics have great potential for nondestructive testing ultrasonic transducer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zhang, X. Zhao, W. Wang, B. Ren, D. Liu, H. Luo, IEEE Trans. Ultrason. Eng. 58, 1774 (2011)

    Article  Google Scholar 

  2. Y. Ono, M. Kobayashi, O. Moisan, C.K. Jen, IEEE Sens. J. 6, 580 (2006)

    Article  Google Scholar 

  3. M. Kobayashi, C.K. Jen, J.F. Bussiere, K.T. Wu, NDT and E Int. 42, 157 (2009)

    Article  CAS  Google Scholar 

  4. X. Jiang, K. Kim, S. Zhang, J. Johnson, G. Salazar, ACS Sens. 14, 144 (2013)

    Article  Google Scholar 

  5. L. Li, S. Zhang, X. Zhuo, X. Geng, T.R. Shrout, Phys. Status Solidi 210, 4 (2013)

    Article  Google Scholar 

  6. N. Schmarje, K.J. Kirk, S. Cochran, Ultrasonics 47, 15 (2007)

    Article  CAS  Google Scholar 

  7. K. J. Kirk, R. Hou, N. Schmarje, N.M. Pragada, L. Torbay, D. Hutson (2015) Insight (Northampton, U. K.) 57: 193

  8. H.J. Lee, S. Zhang, Y. Barcohen, S. Sherrit, ACS Sens. 14, 14526 (2014)

    Article  Google Scholar 

  9. P. David, Z. Shujun, T. Bernhard, I.E.E.E. Trans, IEEE Trans. Ultrason. Eng. 60, 1010 (2013)

    Article  Google Scholar 

  10. X.S. Zhou, J. Zhang, R. Hou, C. Zhao, K.J. Kirk, D. Hutson, P.A. Hu, S.M. Peng, X.T. Zu, Y.Q. Fu, Appl. Surf. Sci. 315, 307 (2014)

    Article  CAS  Google Scholar 

  11. X.S. Zhou, C. Zhao, R. Hou, J. Zhang, K.J. Kirk, D. Hutson, Y.J. Guo, P.A. Hu, S.M. Peng, X.T. Zu, Ultrasonics 54, 2014 (1991)

    Google Scholar 

  12. M.H. Amini, A.N. Sinclair, T.W. Coyle, IEEE Trans. Sonics Ultrason. 63, 448 (2016)

    Article  Google Scholar 

  13. I. Franke, E. Talik, K. Roleder, K. Polgár, J.P. Salvestrini, M.D. Fontana, J. Phys. D 38, 4308 (2005)

    Article  CAS  Google Scholar 

  14. G. Feng, R. Hong, J. Liu, L. Zhen, C.S. Tian, Ceram. Int. 35, 2009 (1863)

    Google Scholar 

  15. N. Zhao, H. Fan, X. Ren, J. Ma, J. Bao, Y. Guo, Y. Zhou, J. Eur. Ceram. Soc. 39, 4096 (2019)

    Article  CAS  Google Scholar 

  16. V.F. Freitas, I.A. Santos, É. Botero, B.M. Fraygola, D. Garcia, J.A. Eiras, J. Am. Ceram. Soc. 94, 754 (2011)

    Article  CAS  Google Scholar 

  17. N. Zhao, H. Fan, X. Ren, J. Ma, J. Bao, Y. Guo, Y. Zhou, Ceram. Int. 44, 18821 (2018)

    Article  CAS  Google Scholar 

  18. X. Ren, H. Fan, Y. Zhao, Z. Liu, ACS Appl. Mater. Interfaces. 8, 26190 (2016)

    Article  CAS  Google Scholar 

  19. G. Dong, H. Fan, H. Tian, J. Fang, Q. Li, RSC Adv. 5, 29618 (2015)

    Article  Google Scholar 

  20. A. Prasatkhetragarn, P. Jantaratana, N. Vittayakorn, B. Yotburut, R. Yimnirun, Ferroelectrics 451, 109 (2013)

    Article  CAS  Google Scholar 

  21. Z. Yao, Y. Liu, Z. Song, Z. Wang, H. Hao, M. Cao, Z. Yu, H. Liu, J. Adv. Ceram. 1, 227 (2012)

    Article  CAS  Google Scholar 

  22. T.L. Burnett, T.P. Comyn, A.J. Bell, J. Cryst. Growth 285, 156 (2005)

    Article  CAS  Google Scholar 

  23. J. Zhuang, L. Chen, W. Ren, Z.G. Ye, Ceram. Int. 39, S207 (2013)

    Article  CAS  Google Scholar 

  24. H. Ning, X. Hou, J. Mater. Sci. 26, 5 (2015)

    Google Scholar 

  25. J. Li, L. Fei, S. Zhang, J. Am. Ceram. Soc. 97, 1 (2014)

    Article  CAS  Google Scholar 

  26. H. Amorin, C. Correas, C.M. Fernandez-Posada, O. Pena, M. Alguero, J. Appl. Phys. 115, 1719 (2014)

    Article  Google Scholar 

  27. S. Hou, X. Yang, C. Fei, X. Sun, Q. Chen, P. Lin, D. Li, Y. Yang, Q. Zhou, J. Electron. Mater. 47, 6842 (2018)

    Article  CAS  Google Scholar 

  28. P. Lin, C. Fei, S. Hou, T. Zhao, Q. Chen, Y. Quan, K.K. Shung, Q. Zhou, IEEE Sens. J. 18, 5685 (2018)

    Article  CAS  Google Scholar 

  29. C. Fei, T. Zhao, J. Zhang, Y. Quan, D. Wang, X. Yang, Q. Chen, P. Lin, D. Li, Y. Yang, S. Dong, W. Ren, K.K. Shung, Q. Zhou, J. Alloys Compd. 743, 365 (2018)

    Article  CAS  Google Scholar 

  30. C. Fei, P. Lin, D. Li, Y. Wu, R. Wu, J. Chen, Y. Yang, IEEE Sens. J. 19, 6650 (2019)

    Article  CAS  Google Scholar 

  31. C. Zhou, Q. Zhou, G. Chen, H. Wang, H. Yang, J. Mater. Sci. 24, 1685 (2013)

    CAS  Google Scholar 

  32. A. Sehirlioglu, A. Sayir, Jt. IEEE Int. Symp. Appl. Ferroelectr. (2008). https://doi.org/10.1109/ISAF.2008.4693837

    Article  Google Scholar 

  33. Z. Yao, H. Liu, M. Cao, H. Hua, Z. Yu, Mater. Res. Bull. 46, 1257 (2011)

    Article  CAS  Google Scholar 

  34. C. Ding, B. Fang, Q. Du, L. Zhou, Phys. Status Solidi 207, 979 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of China under Grant 11604251 and 51602243, in part of the Shaanxi Provincial Association of Science and Technology Young Talents Support Project under Grant 20190105, in part by the National Key Research and Development Program of China under Grant 2017YFC0109703 and in part by National Key Project of Intergovernmental Cooperation in International Scientific and Technological Innovation under Grant 2016YFE0107900.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunlong Fei or Jian Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Fei, C., Chen, Q. et al. Dy-doped BiFeO3-PbFeO3-based piezoelectric ceramics for nondestructive testing ultrasonic transducer applications. J Mater Sci: Mater Electron 31, 1839–1845 (2020). https://doi.org/10.1007/s10854-019-02702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02702-1

Navigation