Skip to main content

Advertisement

Log in

A paste based on Cu@Sn@Ag particles for die attachment under ambient atmosphere in power device packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents a novel die attach material based on Cu@Sn@Ag particles, in which the outermost Ag layer prevents the oxidation of the Sn layer and expedites the consumption of the low-melting point Sn phase. The die attach material can be reflowed at 250 °C for 15 min under a pressure of 3 MPa in the atmosphere, subsequently, the bondline can sustain a much higher temperature up to 480 °C. The results show that the Sn phase was totally transformed into Cu3Sn and Ag3Sn intermetallic compounds (IMCs) after reflow. Moreover, the Cu particles were evenly distributed in the Cu3Sn and Ag3Sn IMCs. After Cu@Sn@Ag particles were heated at 250 °C for 6 h, the average mass increased only by 2.8%, which indicates that the oxidation resistance property of Cu@Sn@Ag particles is excellent. The average electrical resistivity of the bondline was 4.6 µΩ cm, and the thermal conductivities were 159.97 W m−1 K−1, 142.71 W m−1 K−1, 137.28 W m−1 K−1 at 30 °C, 150 °C, 300 °C, respectively. The average shear strengths of the bondline were 25.8 MPa and 19.7 MPa at 30 °C and 400 °C, respectively. The coefficient of thermal expansion of the bondline was measured to be 15.77 × 10–6/°C. This novel paste shows great potential in die attachment in power device packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K Ma M Liserre F Blaabjerg 2015 Thermal loading and lifetime estimation for power device considering mission profiles in wind Power converter IEEE Trans. Power Electron. 302 590 602

    Article  Google Scholar 

  2. L Coppola D Huff F Wang 2017 Survey on high -temperature packaging materials for SiC-based power electronics modules IEEE Power Electron. Spec. Conf. 38 2234 2240

    Google Scholar 

  3. A Drevin-Bazin F Lacroix JF Barbot 2014 2014, SiC die attach for high-temperature applications J. Electron. Mater. 43 695 701

    Article  CAS  Google Scholar 

  4. Y Zhong R An C Wang 2015 Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections Small 11 4097 4103

    Article  CAS  Google Scholar 

  5. Y Mikamura K Hiratsuka T Tsuno 2015 Novel designed SiC devices for high power and high efficiency systems IEEE Trans. Electron. Dev. 62 382 389

    Article  CAS  Google Scholar 

  6. HS Chin KY Cheong AB Ismail 2010 A review on die attach materials for SiC-based high-temperature power devices Metal. Mater. Trans. B 41 824 832

    Article  Google Scholar 

  7. J Li X Li L Wang 2018 A novel multiscale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air Mater. Des. 140 64 72

    Article  Google Scholar 

  8. C Chen J Yeom C Choe 2019 Necking growth and mechanical properties of sintered Ag particles with different shaps under air and N2 atmosphere J. Mater Sci. 54 13344 13357

    Article  CAS  Google Scholar 

  9. Z Zhang C Chen Y Yang 2019 Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air J. Alloys Compd. 780 435 442

    Article  CAS  Google Scholar 

  10. A Albrecht A Rivadeyra A Abdellah 2017 Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns J. Mater. Chem. C 4 3546 3554

    Article  Google Scholar 

  11. SA Paknejad SH Mannan 2017 Review of silver nanoparticle based die attach materials for high power/temperature applications Microelectron. Reliab. 70 1 11

    Article  CAS  Google Scholar 

  12. JF Li PA Agyakwa CM Johnson 2011 Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process Acta Mater. 59 1198 1211

    Article  CAS  Google Scholar 

  13. JF Li PA Agyakwa CM Johnson 2014 Suitable thicknesses of base metal and interlayer, and evolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment J. Electron. Mater. 43 983 995

    Article  CAS  Google Scholar 

  14. J Liu H Zhao Z Li 2018 Microstructure evolution, grain morphology variation and mechanical property change of Cu-Sn intermetallic joints subjected to high-temperature aging Mater. Charact. 135 238 244

    Article  CAS  Google Scholar 

  15. H Chen T Hu M Li 2017 Cu@Sn core–shell structure powder preform for high-temperature applications based on transient liquid phase bonding IEEE Trans. Power Electron. 32 441 451

    Article  Google Scholar 

  16. T Hu H Chen M Li 2017 Microstructure evolution and thermostability of bondline based on Cu@Sn core-shell structured microparticles under high-temperature conditions Mater. Des. 131 196 203

    Article  CAS  Google Scholar 

  17. X Liu S He H Nishikawa 2017 Low temperature solid-state bonding using Sn-Coated Cu particles for high temperature die attach J. Alloys Compd. 695 2165 2172

    Article  CAS  Google Scholar 

  18. X Liu S He H Nishikawa 2016 Thermally stable Cu3Sn/Cu composite joint for high-temperature power device Scripta Mater. 110 101 104

    Article  CAS  Google Scholar 

  19. X Deng N Chawla KK Chawla 2004 Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation Acta Mater. 52 4291 4303

    Article  CAS  Google Scholar 

  20. X Deng M Koopman N Chawla 2004 Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation Mater. Sci. Eng. A 364 240 243

    Article  Google Scholar 

  21. KN Tu 1973 Interdiffusion and reaction in bimetallic Cu-Sn thin film Acta Metal. 21 347

    Article  CAS  Google Scholar 

  22. H Okamoto 2000 Desk Handbook Phase Diagrams for Binary Alloys ASM International Ohio

    Google Scholar 

  23. Y Jiang T Liu H Ru 2019 Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials J. Alloys Compd. 782 761 771

    Article  CAS  Google Scholar 

  24. Y Jiang Q Ren H Ru 2019 Oxidation protection of graphite materials by single-phase ultra-high temperature boride modified monolayer Si-SiC coating Ceram. Int. 45 539 549

    Article  CAS  Google Scholar 

  25. X Li J Feng Y Jiang 2019 Anti-oxidation performance of carbon aerogel composites with SiCO ceramic inner coating Ceram. Int. 45 9704 9711

    Article  CAS  Google Scholar 

  26. F Yu C Hang H Chen 2019 Fabrication of high-temperature resistant bondline based on multilayer core-shell hybrid microspere for power devices J. Mater. Sci. Mater. Electron. 30 4 3596 3600

    Google Scholar 

  27. X Quang LT Jose TN Vinh 2019 Understanging the effects of stress on the coefficient of the thermal expansion Int. J. Eng. Sci. 141 83 94

    Article  Google Scholar 

  28. R Zare H Sharifi MR Saeri 2019 Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite J. Alloys Compd. 801 520 528

    Article  CAS  Google Scholar 

  29. SH Kee WJ Kim JP Jung 2019 Copper-sillicon carbide composite for inhibiting the extrusion of through silicon via (TSV) Microelectron. Eng. 214 5 14

    Article  CAS  Google Scholar 

  30. WJ Parker RJ Jenkins CP Butler 1961 Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity J. Appl. Phys. 32 9 1679 1684

    Article  CAS  Google Scholar 

  31. RR Chromik RP Vinci SL Allen 2003 Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints J. Mater. Res. 18 9 2251 2261

    Article  CAS  Google Scholar 

  32. P Yang Y Lai S Jian 2007 Mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds measured by nanoindentation Int. Conf. Electron. Packag. Technol. https://doi.org/10.1109/ICEPT.2007.4441421

    Article  Google Scholar 

  33. FM Smits 1958 Measurement of sheet resistivities with the four-point probe bell system Tech. J. 37 3 711 718

    Google Scholar 

Download references

Ackonwledgements

This work is financially supported by the Opening Project of Science and Technology on Reliability Physics and Application of Electronic Component Laboratory (ZHD201801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Fu or Hongtao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, K., Yu, F. et al. A paste based on Cu@Sn@Ag particles for die attachment under ambient atmosphere in power device packaging. J Mater Sci: Mater Electron 31, 1808–1816 (2020). https://doi.org/10.1007/s10854-019-02697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02697-9

Navigation