Skip to main content

Advertisement

Log in

Controllable synthesize core-shelled Zn0.76Co0.24S nanospheres as the counter-electrode in dye-sensitized solar cells and its enhanced electrocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The core-shelled structure nanomaterial is a potential kind of progressive catalysts for the transformation of energy due to their superior catalytic properties, large specific surface, and expedited velocity of electron transport. Meanwhile, the transition metal chalcogenides with complex nanostructures have been considered potential substitutes for highly active and scarce noble metal because of the remarkable electrical and photic catalytic activity. In this study, the Zn0.76Co0.24S nanospheres with different nanostructures were obtained by varying the solvothermal treatment durations. The measurement results exhibited that the as-prepared Zn0.76Co0.24S nanospheres possessed a large surface area (135.7 m2 g−1), better average pore size distribution (9.2 nm), and the excellent conductivity (Rct = 0.24 Ω). Specifically, the photocurrent density versus voltage (JV) curves demonstrated that a 7.42% power conversion efficiency (PCE) was achieved for the dye-sensitized solar cells (DSSCs) employing Zn0.76Co0.24S as the counter-electrode under a simulated solar light, which is evidently superior to the value of Pt (7.07% PCE) and the value of ZnCo2O4 (4.60% PCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C.J. Lin, Z.Q. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today. 18, 155–162 (2015)

    CAS  Google Scholar 

  2. P. Ramasamy, P. Manivasakan, J. Kim, Phase controlled synthesis of SnSe and SnSe2 hierarchical nanostructures made of single crystalline ultrathin nanosheets. CrystEngComm 17, 807–813 (2015)

    CAS  Google Scholar 

  3. Y. Lou, W.J. Zhao, C.G. Li, H. Huang, T.Y. Bai, C.L. Chen, C. Liang, Z. Shi, D. Zhang, X.B. Chen, S.H. Feng, Fabricating metallic circuit patterns on polymer substrates through laser and selective metallization. ACS Appl. Mater. Interfaces. 9, 18046–18053 (2017)

    CAS  Google Scholar 

  4. K. Xiong, Z. Liu, J. Yuan et al., La0.5Sr0.5CoO2.91@RGO nanocomposites as an effective counter electrode for dye-sensitized solar cells. J. Mater. Sci. 28, 1679 (2017)

    CAS  Google Scholar 

  5. R. Govindaraj, M. Senthil Pandian, G. Senthil Murugan, P. Ramasamy, S. Mukhopadhyay, Synthesis of porous titanium dioxide nanorods/nanoparticles and their properties for dye sensitized solar cells. J. Mater. Sci. 26, 2609 (2015)

    CAS  Google Scholar 

  6. Z.S. Wang, C.H. Huang, Y.Y. Huang, Y.J. Hou, P.H. Xie, B.W. Zhang, H.M. Cheng, A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem. Mater. 13, 678–682 (2001)

    CAS  Google Scholar 

  7. J. Liu, A. Wei, Y. Zhao, K. Lin, F. Luo, Dye-sensitized solar cells based on ZnO nanoflowers and TiO2 nanoparticles composite photoanodes. J. Mater. Sci. 25, 122–1126 (2014)

    Google Scholar 

  8. J. Duan, H. Zhang, Q. Tang, B. He, L. Yu, Recent advances in critical materials for quantum dot-sensitized solar cells: a review. J. Mater. Chem. A 3, 17497–17510 (2015)

    CAS  Google Scholar 

  9. J. Yu, Y. Yang, R. Fan, P. Wang, Y. Dong, Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material: upconversion YbF3-Ho/TiO2 nanoheterostructures. Nanoscale. 8(7), 4173–4180 (2016)

    CAS  Google Scholar 

  10. J.K. Lee, B.H. Jeong, S.I. Jang, Y.S. Yeo, S.H. Park, J.U. Kim, Y.G. Kim, Y.W. Jang, M.R. Kim, Multi-layered TiO2 nanostructured films for dye-sensitized solar cells. J. Mater. Sci. 20, 46–450 (2009)

    Google Scholar 

  11. L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Hierarchical MoS2 nanosheet@ TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12(11), 1527–1536 (2016)

    CAS  Google Scholar 

  12. L.Y. Lin, C.H. Tsai, K.T. Wong, T.W. Huang, C.C. Wu, S.-H. Chou, A.I. Tsai, Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective π-spacer. J. Mater. Chem. 21(16), 5950 (2011)

    CAS  Google Scholar 

  13. M.Y. Ghotbi, Solid state electrolytes for electrochemical energy devices. J. Mater. Sci. 30, 13835–13854 (2019)

    Google Scholar 

  14. P. Pawinrat, O. Mekasuwandumrong, J. Panpranot, Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal. Commun. 10, 1380–1385 (2009)

    CAS  Google Scholar 

  15. W. Wang, J. Yao, G. Li, Dual-functional Fe3O4@N-rGO catalyst as counter electrode with high performance in dye-sensitized solar cells. J. Electroanal. Chem. 823, 261–268 (2018)

    CAS  Google Scholar 

  16. Z. Jin, M. Zhang, M. Wang, C. Feng, Z.-S. Wang, Metal selenides as efficient counter electrodes for dye-sensitized solar cells. Acc. Chem. Res. 50, 895–904 (2017)

    CAS  Google Scholar 

  17. Y. Zheng, Y. Jiao, A. Vasileff, S.-Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Chem. Int. Ed. 57, 7568–7579 (2018)

    CAS  Google Scholar 

  18. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 46, 5975–6023 (2017)

    CAS  Google Scholar 

  19. L. Tian, J. Murowchick, X. Chen, Improving the activity of Co x P nanoparticles for the electrochemical hydrogen evolution by hydrogenation. Sustain. Energy Fuels. 1, 62–68 (2017)

    CAS  Google Scholar 

  20. Y. Wang, D. Yan, S. El Hankari, Y. Zou, S. Wang, Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018)

    Google Scholar 

  21. H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity. ACS Appl. Mater. Interfaces. 6, 3242–3249 (2014)

    CAS  Google Scholar 

  22. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Ultralight metallic microlattices. Science 334, 962–965 (2011)

    CAS  Google Scholar 

  23. H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554–2560 (2013)

    CAS  Google Scholar 

  24. X. Liu, B. You, X.-Y. Yu, J. Chipman, Y. Sun, Electrochemical oxidation to construct a nickel sulfide/oxide heterostructure with improvement of capacitance. J. Mater. Chem. A. 4, 11611–11615 (2016)

    CAS  Google Scholar 

  25. X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, X. Fang, Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv. Funct. Mater. 25(3), 445–454 (2015)

    CAS  Google Scholar 

  26. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56(2), 175–287 (2011)

    CAS  Google Scholar 

  27. G.-F. Chen, T.Y. Ma, Z.-Q. Liu, N. Li, Y.-Z. Su, K. Davey, S.Z. Qiao, Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314–3323 (2016)

    CAS  Google Scholar 

  28. Z. Zhi-Ming, F. Xiao-Sheng, Preparation and photodetection property of ZnO Nanorods/ZnCo2O4 nanoplates heterojunction. J. Inorg. Mater. 34(9), 991–996 (2019)

    Google Scholar 

  29. K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248–3253 (2008)

    CAS  Google Scholar 

  30. J. Rouhi, M.H. Mamat, C.H.R. Ooi, S. Mahmud, M.R. Mahmood, High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO–ZnS heterostructure nanocone photoanodes. PLoS ONE 10(4), e0123433 (2015)

    Google Scholar 

  31. Z. Shi, K. Deng, L. Li, Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells. Sci. Rep. 5(1), 2045–2322 (2015)

    Google Scholar 

  32. J. Chung, J. Myoung, J. Oh, S. Lim, Synthesis of a ZnS shell on the ZnO nanowire and its effect on the nanowire-based dye-sensitized solar cells. J. Phys. Chem. C. 114(49), 21360–21365 (2010)

    CAS  Google Scholar 

  33. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. Mcgovern, B. Holland, M. Byrne, Gun’ko YK, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2, 177–183 (2015)

    Google Scholar 

  34. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    CAS  Google Scholar 

  35. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Chem. Int. Edit. 48, 7752–7777 (2009)

    CAS  Google Scholar 

  36. Y.H. Jin, L. Wang, Y.M. Shang, J. Gao, J.J. Li, X.M. He, Urea-assisted solvothermal synthesis of monodisperse multiporous hierarchical micro/nanostructured ZnCo2O4 microspheres and their lithium storage properties. Ionics 21, 2743–2754 (2015)

    CAS  Google Scholar 

  37. S.G. Mohamed, T.F. Hung, C.J. Chen, C.K. Chen, S.F. Hu, R.S. Liu, K.C. Wang, X.K. Xing, H.M. Liu, A.S. Liu, M.H. Hsieh, B.J. Lee, Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries. Rsc Adv. 3, 20143–20149 (2013)

    CAS  Google Scholar 

  38. J.F. Li, J.Z. Wang, D. Wexler, D.Q. Shi, J.W. Liang, H.K. Liu, S.L. Xiong, Y.T. Qian, Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. Mater. Chem. A 1, 15292–15299 (2013)

    CAS  Google Scholar 

  39. V. Murugadoss, J. Lin, H. Liu, X. Mai, T. Ding, Z. Guo, S. Angaiah, Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells. Nanoscale 11(38), 17579–17589 (2019)

    CAS  Google Scholar 

  40. B. Zhang, D. Wang, Y. Hou, S. Yang, X.H. Yang, J.H. Zhong, J. Liu, H.F. Wang, P. Hu, H.J. Zhao, H.G. Yang, Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells. Sci. Rep. 3, 1836 (2013)

    Google Scholar 

  41. J. Yao, K. Zhang, W. Wang, Remarkable enhancement in the photoelectric performance of uniform flower-like mesoporous Fe3O4 wrapped in nitrogen-doped graphene networks. ACS Appl. Mater. Interfaces 10(23), 19564–19572 (2018)

    CAS  Google Scholar 

  42. J. Wan, G. Fang, H. Yin, X. Liu, D. Liu, M. Ke, W. Zhao, H. Tao, Z. Tang, Pt–Ni Alloy nanoparticles as superior counter electrodes for dye-sensitized solar cells: Experimental and theoretical understanding. Adv. Mater. 26, 8101–8106 (2014)

    CAS  Google Scholar 

  43. J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. 51, 11496–11500 (2012)

    CAS  Google Scholar 

  44. J. Huo, M. Zheng, Y. Tu, J. Wu, L. Hu, S. Dai, A high performance cobalt sulfide counter electrode for dye-sensitized solar cells. Acta 159, 166–173 (2015)

    CAS  Google Scholar 

  45. J. Yao, W. Wang, X. Zuo, Multi-interface superstructure strategy to improve the catalytic activity and cyclic stability in enhancing the photo conversion in solar cells. Appl. Catal. B 256, 117857 (2019)

    CAS  Google Scholar 

  46. H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang, H.N. Alshareef, J.H. He, MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater (2019). https://doi.org/10.1002/aenm.201900180

    Article  Google Scholar 

  47. J. Schrier, D.O. Demchenko, A.P. Alivisatos, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7(8), 2377–2382 (2007)

    CAS  Google Scholar 

  48. M. Wu, X. Lin, A. Hagfeldt, T. Ma, A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun. 47, 4535–4537 (2011)

    CAS  Google Scholar 

  49. J. Bai, X.G. Li, G.Z. Liu, Y.T. Qian, S.L. Xiong, Unusual formation of ZnCo2O4 3D hierarchical Twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 24, 3012–3020 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support for this work from the National Key R&D Program of China (2017YFA0403503), National Natural Science Foundation of China (11674001), Key Natural Science Research Program of Anhui Educational Committee (KJ2018ZD001, KJ2013A030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Li or Shaowei Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Yang, Q., Wang, W. et al. Controllable synthesize core-shelled Zn0.76Co0.24S nanospheres as the counter-electrode in dye-sensitized solar cells and its enhanced electrocatalytic performance. J Mater Sci: Mater Electron 31, 1797–1807 (2020). https://doi.org/10.1007/s10854-019-02696-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02696-w

Navigation