Skip to main content

Advertisement

Log in

WS2@Co9S8@N/C core–shell as multifunctional electrocatalysts for dye-sensitized solar cell, oxygen reduction reaction and oxygen evolution reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is promising strategy in recent years to design and prepare metal/carbon-based functional materials with different structures using metal–organic framework (MOF) composite precursors. Hollow multi-shell nanomaterials with large specific surface area and abundant active sites have become high energy conversion catalytic materials. The first prepared the transition metal chalcogenides of the nano-structure of the hollow core–shell and then grew the zeolitic imidazolate frameworks-67 in situ on the nanoparticles of core–shell. Then, through pyrolysis to obtain multilayer core–shell particles with porous outer shell of Co/N-doped carbon skeleton. WS2@Co9S8-2@N/C is applied in dye-sensitized solar cells as counter electrode material, showing good catalytic performance for I/I3 redox reaction, and the power conversion efficiency is as high as 9.85%. As the electrode material of oxygen reduction reaction, the half-wave potential can reach E1/2 = 0.855 V. For oxygen evolution reaction tests, there is a low overvoltage of 1.757 V when the current density is 10 mV cm−1. In addition, the MOF can be grown in situ in different nanostructures, which can gain its advantages as a multifunctional material in terms of structure and multi-element, and this method can be applied to the fabricate of composite materials with different structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Yang L, Zeng X, Wang W, Cao D (2018) Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv Funct Mater 28(7):1704537

    Article  Google Scholar 

  2. Sun M, Davenport D, Liu H, Qu J, Elimelech M, Li J (2018) Highly efficient and sustainable non-precious-metal Fe-N-C electrocatalysts for oxygen reduction reaction. J Mater Chem A 6:2527–2539

    Article  CAS  Google Scholar 

  3. Wang Z, Zhang Z, Xia J, Wang W, Sun S, Liu L, Yang H (2018) Fe2O3@C core@shell nanotubes: porous Fe2O3 nanotubes derived from MIL-88A as cores and carbon as shells for high power lithiumion batteries. J Alloys Compd 769:969–976

    Article  CAS  Google Scholar 

  4. Guan BY, Yu L, Lou XW (2016) Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J Am Chem Soc 138(35):11306–11311

    Article  CAS  Google Scholar 

  5. Liu J, Zhu D, Guo C, Vasileff A, Qiao S-Z (2017) Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv Energy Mater 7(23):1700518

    Article  Google Scholar 

  6. Lee JG, Hwang J, Hwang HJ, Jeon OS, Jang J, Kwon O, Lee Y, Han B, Shul YG (2016) A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO.3 and BaNi0.83O2.5. J Am Chem Soc 138(10):3541–3547

    Article  CAS  Google Scholar 

  7. Li Y, Dai H (2014) Recent advances in zinc-air batteries. Chem Soc Rev 43:5257–5275

    Article  CAS  Google Scholar 

  8. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44(8):2168–2201

    Article  CAS  Google Scholar 

  9. Chao Wu, Joachim Maier, Yan Yu (2016) Generalizable synthesis of metal-sulfides/carbon hybrids with multiscale, hierarchically ordered structures as advanced electrodes for lithium storage. Adv Mater 28(1):174–180

    Article  Google Scholar 

  10. An L, Li YX, Luo MC, Yin J, Zhao YQ, Xu CL, Cheng FY, Yang Y, Xi PX, Guo SJ (2017) Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv Funct Mater 27(42):1703779

    Article  Google Scholar 

  11. Gao H, Zhou TF, Zheng Y, Zhang Q, Liu YQ, Chen J, Liu HK, Guo ZP (2017) CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv Funct Mater 27(43):1702634

    Article  Google Scholar 

  12. Unni SM, Mora-Hernandez JM, Kurungot S, Alonso-Vante N (2015) CoSe2 supported on nitrogen-doped carbon nanohorns as a methanol-tolerant cathode for air-breathing microlaminar flow fuel cells. ChemElectroChem 2(9):1339–1345

    Article  CAS  Google Scholar 

  13. Kumar DP, Hong S, Reddy DA, Kim TK (2017) Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Appl Catal B-Environ 212:7–14

    Article  CAS  Google Scholar 

  14. Chava RK, Do JY, Kang M (2018) Smart hybridization of Au coupled CdS nanorods with few layered MoS2 nanosheets for high performance photocatalytic hydrogen evolution reaction. ACS Sustain Chem Eng 6(5):6445–6457

    Article  CAS  Google Scholar 

  15. Yue G, Wu J, Lin J-Y, Xiao Y, Tai S-Y, Lin J, Huang M, Lan Z (2013) A counter electrode of multi-wall carbon nanotubes decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon 55:1–9

    Article  CAS  Google Scholar 

  16. Sidik RA, Anderson AB (2006) Co9S8 as a catalyst for electroreduction of O2: quantum chemistry predictions. J Phys Chem B 110(2):936–941

    Article  CAS  Google Scholar 

  17. Zhu YP, Guo C, Zheng Y, Qiao SZ (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50(4):915–923

    Article  CAS  Google Scholar 

  18. Peng S, Li L, Zhang J, Tan TL, Zhang T, Ji D, Han X, Cheng F, Ramakrishna S (2017) Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting. J Mater Chem A 5(44):23361–23368

    Article  CAS  Google Scholar 

  19. Li H, Su Y, Sun WW, Wang Y (2016) Carbon nanotubes rooted in porous ternary metal sulfide @ N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries. Adv Funct Mater 26(45):8345–8353

    Article  CAS  Google Scholar 

  20. Hui X, Wen X, Chiew K, Lim Q, Yao Y (2014) Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res 7:1797–1808

    Article  Google Scholar 

  21. Wang X, Li G, Seo MH, Hassan FM, Hoque MA, Chen ZW (2015) Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv Energy Mater 5(23):1501106.

  22. Li LH, Song L, Guo H, Xia W, Jiang C, Gao B, Wu C, Wang T, He JP (2019) N-Doped porous carbon nanosheets decorated with graphitized carbon layer encapsulated Co9S8 nanoparticles: an efficient bifunctional electrocatalyst for the OER and ORR. Nanoscale 11(3):901–907

    Article  CAS  Google Scholar 

  23. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M (2013) Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. Nature 49(87):10326–10328

    Google Scholar 

  24. Zhang JP, Zhang YB, Lin JB (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112(2):1001–1033

    Article  CAS  Google Scholar 

  25. Guillerm V, Ragon F, Dan-Hardi M, Devic T, Vishnuvarthan M, Campo B, Vimont A, Clet G, Yang Q, Maurin G, Frey G, Vittadini A, Gross S, Serre C (2012) A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew Chem Int Ed Engl 124(37):9401–9405

    Article  Google Scholar 

  26. Hu L, Chen Q (2013) Hollow/Porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 6(3):1236–1257

    Article  Google Scholar 

  27. Sun JK, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energ Environ Sci 7(7):2071–2100

    Article  CAS  Google Scholar 

  28. Tabassum H, Guo W, Meng W et al (2017) Hydrogen evolution: metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all ph value electrochemical hydrogen evolution. Adv Energy Mater 7(9):1601671

    Article  Google Scholar 

  29. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core-shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137(4):1572–1580

    Article  CAS  Google Scholar 

  30. You B, Jiang N, Sheng M, Drisdell WS, Yano J, Sun Y (2015) Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal 5(12):7068–7076

    Article  CAS  Google Scholar 

  31. Dou Y, Lian R, Zhang Y, Zhao Y, Peng Z (2018) Co9S8@carbon porous nanocages derived from a metal–organic framework: a highly efficient bifunctional catalyst for aprotic Li-O2 batteries. J Mater Chem A 6(18):8595–8603

    Article  CAS  Google Scholar 

  32. Wei X, Mahmood A, Zou R, Qiang X (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energ Environ Sci 8(7):1837–1866

    Article  Google Scholar 

  33. Pei F, An T, Zang J, Zhao X, Fang X, Zheng M, Dong Q, Zheng N (2016) From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-s batteries. Adv Energy Mater 6(8):1502539

    Article  Google Scholar 

  34. Wu R, Qian X, Rui X, Liu H, Yadian B, Zhou K, Wei J, Yan Q, Feng XQ, Long Y, Wang L, Huang Y (2014) Zeolitic imidazolate framework 67-derived highsymmetric porous Co3O4 hollow dodecahedra with highly enhanced lithiumstorage capability. Small 10(10):1932–1938

    Article  CAS  Google Scholar 

  35. Qu F, Jiang H, Yang M (2016) Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale 8(36):16349–16356

    Article  CAS  Google Scholar 

  36. Zhang L, Shi L, Huang L, Zhang J, Zhang D (2014) Rational design of high-performance DeNOx catalysts based on MnxCo3-xO4 nanocages derived from metal-organic frameworks. Acs Catal 4(6):1753–1763

    Article  CAS  Google Scholar 

  37. Koo WT, Choi SJ, Kim SJ, Jang JS, Tuller HL, Kim ID (2016) Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc 138(40):13431–13437

    Article  CAS  Google Scholar 

  38. Liu J, Qiao S, Budi Hartono S, Lu G (2010) Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Edit 49(29):4981–4985

    Article  CAS  Google Scholar 

  39. Teng ZG, Wang SJ, Su XD, Chen GT, Liu Y, Luo ZM, Luo W, Tang YX, Ju HX, Zhao DY, Lu GM (2014) Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. Adv Mater 26(22):3741–3747

    Article  CAS  Google Scholar 

  40. Liang SX, Jia Z, Liu YJ, Zhang WC, Wang WM, Lu J, Zhang LC (2018) Metallic glasses: compelling rejuvenated catalytic performance in metallic glasses. Adv Mater 30(45):1802764

    Article  Google Scholar 

  41. Raju GSR, Pavitra E, Nagaraju G, Chandra SS, Majid GS, Hwan KC, Su YJ, Suk HY, Han YK (2018) Rational design of forest-like nickel sulfide hierarchical architectures with ultrahigh areal capacity as a binder-free cathode material for hybrid supercapacitors. J Mater Chem A 6(27):13178–13190

    Article  Google Scholar 

  42. Zhang P, Guan BY, Yu L, Lou XW (2018) Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion. Chem 4(1):162–173

    Article  CAS  Google Scholar 

  43. Mao L, Meng L, Wang QL, Chen WY, Han HY, Sun Z (2011) Efficient dye-sensitized solar cells with triarylamine organic dyes featuring functionalized-truxene unit. J Power Sources 196(3):1657–1664

    Article  Google Scholar 

  44. Guo Y, Tang J, Qian H, Wang Z, Yamauchi Y (2017) One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem Mater 29(13):5566–5573

    Article  CAS  Google Scholar 

  45. Fu L, Kang C, Xiong W, Tian P, Cao S, Wan S, Chen H, Zhou C, Liu Q (2021) WS2 nanosheets @ZIF-67-derived N-doped carbon composite as sodium ion battery anode with superior rate capability. J Colloid Interf Sci 595:59–68

    Article  CAS  Google Scholar 

  46. Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, Shao L, Hou L (2017) Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Inter 9(34):28394–28405

    Article  CAS  Google Scholar 

  47. Pendashteh A, Palma J, Anderson M, Marcilla R (2017) NiCoMnO4 nanoparticles on N-doped graphene: highly efficient bifunctional electrocatalyst for oxygen reduction/evolution reactions. Appl Catal B-Environ 201:241–252

    Article  CAS  Google Scholar 

  48. Zhang B, Zhang XF, Huang DK, Li SH, Yuan HL, Wang MK, Shen Y (2015) Co9S8 hollow spheres for enhanced electrochemical detection of hydrogen peroxide-ScienceDirect. Talanta 141:73–79

    Article  CAS  Google Scholar 

  49. Jin H, Wang J, Su D, Wei Z, Pang Z (2015) In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137(7):2688–2694

    Article  CAS  Google Scholar 

  50. Su Y, Zhu Y, Jiang H, Shen J, Yang X, Zou W, Chen J (2014) Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6(24):15080–15089

    Article  CAS  Google Scholar 

  51. Feng Z, Zou H, Yang W, Peng Z, Chen S (2021) Facile synthesis of heterogeneous Co3S4@Ni3S4 nanoflower arrays on Ni foam for high-performance asymmetric all-solid-state supercapacitors. J Alloy Compd 862:158586

    Article  CAS  Google Scholar 

  52. Zhang M, Uchaker E, Hu S, Zhang Q, Wang T, Cao G, Li J (2013) CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale 5(24):12342–12349

    Article  CAS  Google Scholar 

  53. Long JY, Gong Y, Lin J (2017) Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro-and photo-catalysts for the oxygen evolution reaction. J Mater Chem A 5(21):10495–10509

    Article  CAS  Google Scholar 

  54. Xin X, He M, Han W, Jung J, Lin Z (2011) Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed 50(49):11739–11742

    Article  CAS  Google Scholar 

  55. Qian X, Xu C, Jiang Y, Zhang J, Guan G, Huang Y (2019) Ni-Co-MoS ball-in-ball hollow nanospheres as Pt-free bifunctional catalysts for high-performance solar cells and hydrogen evolution reactions. Chem Eng J 368:202–211

    Article  CAS  Google Scholar 

  56. Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:16184

    Article  CAS  Google Scholar 

  57. Qin L, Wang Y, Dai L, Yao J (2016) Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv Mater 28:3000–3006

    Article  Google Scholar 

  58. Asazawa K, Kishi H, Tanaka H, Matsumura D, Tamura K, Nishihata Y, Saputro AG, Nakanishi H, Kasai H, Artyushkova K, Atanassov PJ (2014) In situ XAFS and HAXPES analysis and theoretical study of cobalt polypyrrole incorporated on carbon (CoPPyC) Oxygen reduction reaction catalysts for anion-exchange membrane fuel cells. J Phys Chem C 118(44):25480–25486

    Article  CAS  Google Scholar 

  59. Ge XM, Sumboja A, Wuu D, An T, Li B, Goh FWT, Hor TSA, Zong Y, Liu ZL (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5(8):4643–4667

    Article  CAS  Google Scholar 

  60. Lu X, Yim WL, Suryanto BHR, Zhao C (2015) Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am Chem Soc 137(8):2901–2907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21566030), and Natural Science Foundation of Inner Mongolia (2015MS0205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfang Gao.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2003 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, X., Zhao, X. et al. WS2@Co9S8@N/C core–shell as multifunctional electrocatalysts for dye-sensitized solar cell, oxygen reduction reaction and oxygen evolution reaction. J Mater Sci 57, 6293–6307 (2022). https://doi.org/10.1007/s10853-022-07028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07028-8

Navigation