Skip to main content

Advertisement

Log in

Sonochemically synthesized Ni-doped ZnS nanoparticles: structural, optical, and photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we investigate the effect of Ni doping on the crystallite size (Dhkl), optical band gap (\(E_{\text{g}}^{\text{opt}}\)), Photoluminescence emission (PL) behavior, as well as the photocatalytic degradation efficiency of methylene blue (MB) by ZnS nanoparticles (NPs) catalyst. Undoped and Ni-doped ZnS NPs at Ni concentrations of 2, 4, 6, 8, and 10% are successfully synthesized with average Dhkl from 2.75 to 3.76 nm by the sonochemical technique. X-ray diffraction (XRD) patterns and high-resolution transmission electron microscope (HRTEM) images of all samples exhibit pure zinc-blende type of ZnS cubic structure. The increase in Ni content up to 4% results in an increase in the Dhkl and unit cell volume (V) accompanied by a decrease in \(E_{\text{g}}^{\text{opt}}\). Meanwhile, a further increase in Ni content above 4% leads to a decrease in Dhkl and V and an increase in \(E_{\text{g}}^{\text{opt}}\). The deconvoluted PL emission spectrum of the undoped sample at the excitation wavelength (λex) of 325 nm reveals emission bands centered at 3.41, 3.16, 2.89, and 2.26 eV, which are red-shifted with increasing λex to 370 nm. It is observed that the PL emission intensity is quenched with increasing Ni content without any noticeable change in the PL peak position. Ni-doped ZnS catalyst with 2% Ni exhibits maximum photo-degradation efficiency of 52.23% with a rate constant of 0.00396 min−1. The obtained results demonstrate that Ni doping can tune the optical band gap and photocatalytic efficiency of ZnS NPs that make it applicable for many optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Afzaal, M.A. Malik, P. O’Brien, Chemical routes to chalcogenide materials as thin films or particles with critical dimensions with the order of nanometres. J. Mater. Chem. 20(20), 4031–4040 (2010)

    Article  CAS  Google Scholar 

  2. X. Fang et al., ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56(2), 175–287 (2011)

    Article  CAS  Google Scholar 

  3. S. Biswas, S. Kar, Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19(4), 45710 (2008)

    Article  CAS  Google Scholar 

  4. L. Dong, Y. Chu, Y. Zhang, Microemulsion-mediated solvothermal synthesis of ZnS nanowires. Mater. Lett. 61(23–24), 4651–4654 (2007)

    Article  CAS  Google Scholar 

  5. T. Kang et al., Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts. J. Phys. Chem. C 113(14), 5352–5357 (2009)

    Article  CAS  Google Scholar 

  6. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241 (2003)

    Article  CAS  Google Scholar 

  7. M. Bredol, J. Merikhi, ZnS precipitation: morphology control. J. Mater. Sci. 33(2), 471–476 (1998)

    Article  CAS  Google Scholar 

  8. V. Stanić, T.H. Etsell, A.C. Pierre, R.J. Mikula, Sol-gel processing of ZnS. Mater. Lett. 31(1–2), 35–38 (1997)

    Article  Google Scholar 

  9. T.T. Hoa, L. Van Vu, T.D. Canh, N.N. Long, Preparation of ZnS nanoparticles by hydrothermal method. J. Phys: Conf. Ser. 187, 012081 (2009)

    Google Scholar 

  10. X. Zhou, Q. Yang, H. Wang, F. Huang, J. Zhang, S. Xu, Effects of Ni2+concentration and vacuum annealing on structure, morphology and optical properties of Ni doped ZnS nanopowders synthesized by hydrothermal method. Adv. Powder Technol. 29(4), 977–984 (2018)

    Article  CAS  Google Scholar 

  11. X.H. Liao, J.J. Zhu, H.Y. Chen, Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater. Sci. Eng., B 85(1), 85–89 (2001)

    Article  Google Scholar 

  12. Y. Zhao, J.M. Hong, J.J. Zhu, Microwave-assisted self-assembled ZnS nanoballs. J. Cryst. Growth 270(3–4), 438–445 (2004)

    Article  CAS  Google Scholar 

  13. H. Yang, C. Huang, X. Su, A. Tang, Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles. J. Alloys Compd. 402(1–2), 274–277 (2005)

    Article  CAS  Google Scholar 

  14. E.K. Goharshadi, S.H. Sajjadi, R. Mehrkhah, P. Nancarrow, Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots. Chem. Eng. J. 209, 113–117 (2012)

    Article  CAS  Google Scholar 

  15. N.A. Dhas, A. Zaban, A. Gedanken, Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties. Chem. Mater. 11(3), 806–813 (1999)

    Article  CAS  Google Scholar 

  16. S. Senthilkumaar, R.T. Selvi, Formation of hexagonal shaped wurtzite zinc sulphide nano rods. Appl. Phys. A 94(1), 123–129 (2009)

    Article  CAS  Google Scholar 

  17. W.B. McNamara III, Y.T. Didenko, K.S. Suslick, Sonoluminescence temperatures during multi-bubble cavitation. Nature 401(6755), 772 (1999)

    Article  CAS  Google Scholar 

  18. A. Datta, S. Biswas, S. Kar, S. Chaudhuri, Multicolor luminescence from transition metal ion (Mn2+ and Cu2+) doped ZnS nanoparticles. J. Nanosci. Nanotechnol. 7(10), 3670–3676 (2007)

    Article  CAS  Google Scholar 

  19. T.T.Q. Hoa, N.D. The, S. McVitie, N.H. Nam, T.D. Canh, N.N. Long, Optical properties of Mn-doped ZnS semiconductor nanoclusters synthesized by a hydrothermal process. Opt. Mater. (Amst) 33(3), 308–314 (2011)

    Article  CAS  Google Scholar 

  20. G. Murugadoss, Luminescence properties of co-doped ZnS:Ni, Mn and ZnS:Cu, Cd nanoparticles. J. Lumin. 132(8), 2043–2048 (2012)

    Article  CAS  Google Scholar 

  21. L. Liu, L. Yang, Y. Pu, D. Xiao, J. Zhu, Optical properties of water-soluble Co2+: ZnS semiconductor nanocrystals synthesized by a hydrothermal process. Mater. Lett. 66(1), 121–124 (2012)

    Article  CAS  Google Scholar 

  22. H.Z. Khafri, M. Ghaedi, A. Asfaram, M. Safarpoor, Synthesis and characterization of ZnS: Ni NPs loaded on AC derived from apple tree wood and their applicability for the ultrasound assisted comparative adsorption of cationic dyes based on the experimental design. Ultrason. Sonochem. 38, 371–380 (2017)

    Article  CAS  Google Scholar 

  23. D. Li, J. Qin, Q. Xu, G. Yan, A room-temperature phosphorescence sensor for the detection of alkaline phosphatase activity based on Mn-doped ZnS quantum dots. Sens. Actuators B Chem. 274, 78–84 (2018)

    Article  CAS  Google Scholar 

  24. L. Wang et al., Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 391, 557–564 (2017)

    Article  CAS  Google Scholar 

  25. C.J. Chang, P.Y. Chao, Efficient photocatalytic hydrogen production by doped ZnS grown on Ni foam as porous immobilized photocatalysts. Int. J. Hydrog. Energy 44, 20805–20814 (2018)

    Article  CAS  Google Scholar 

  26. M.E. Pacheco, C.B. Castells, L. Bruzzone, Mn-doped ZnS phosphorescent quantum dots: coumarins optical sensors. Sens. Actuators B Chem. 238, 660–666 (2017)

    Article  CAS  Google Scholar 

  27. B. Poornaprakash, U. Chalapathi, S.V.P. Vattikuti, Compositional, morphological, structural, microstructural, optical, and magnetic properties of Fe Co, and Ni doped ZnS nanoparticles. Appl. Phys. A 123(4), 275 (2017)

    Article  CAS  Google Scholar 

  28. R.S. Kumar, V. Veeravazhuthi, N. Muthukumarasamy, M. Thambidurai, Superlattices and microstructures effect of nickel doping on structural and optical properties of ZnS nanoparticles. Superlattices Microstruct. 86, 552–558 (2015)

    Article  CAS  Google Scholar 

  29. D. Jiang et al., Synthesis and luminescence properties of core/shell ZnS:Mn/ZnO nanoparticles. Nanoscale Res. Lett. 4(1), 78 (2009)

    Article  CAS  Google Scholar 

  30. X. Li, C. Hu, H. Liu, J. Xu, B. Wan, X. Wang, ZnS nanoparticles self-assembled from ultrafine particles and their highly photocatalytic activity. Phys. E Low-dimens. Syst. Nanostructures 43(5), 1071–1075 (2011)

    Article  CAS  Google Scholar 

  31. S. Kohtani, E. Yoshioka, H. Miyabe, Photocatalytic Hydrogenation on Semiconductor Particles, in Hydrogenation (Intech, Rijeka, 2012)

    Google Scholar 

  32. S.H. Mohamed, Photocatalytic, optical and electrical properties of copper-doped zinc sulfide thin films. J. Phys. D Appl. Phys. 43(3), 35406 (2010)

    Article  CAS  Google Scholar 

  33. H.R. Rajabi, M. Farsi, Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: synthesis, characterization, and application for dye decolorization. J. Mol. Catal. A: Chem. 399, 53–61 (2015)

    Article  CAS  Google Scholar 

  34. J. Kaur, M. Sharma, O.P. Pandey, Photoluminescence and photocatalytic studies of metal ions (Mn and Ni) doped ZnS nanoparticles. Opt. Mater. (Amst) 47, 7–17 (2015)

    Article  CAS  Google Scholar 

  35. A.A. Othman, M.A. Ali, E.M.M. Ibrahim, M.A. Osman, Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. J. Alloys Compd. 683, 399–411 (2016)

    Article  CAS  Google Scholar 

  36. A.A. Othman, M.A. Osman, E.M.M. Ibrahim, M.A. Ali, A.G. Abd-Elrahim, Mn-doped ZnO nanocrystals synthesized by sonochemical method: structural, photoluminescence, and magnetic properties. Mater. Sci. Eng., B 219, 1–9 (2017)

    Article  CAS  Google Scholar 

  37. M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I.K. Punithavathy, J.P. Richard, Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159(2016), 434–443 (2018)

    Article  CAS  Google Scholar 

  38. S. Kumar et al., Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J. Alloys Compd. 554, 357–362 (2013)

    Article  CAS  Google Scholar 

  39. H. Labiadh, B. Sellami, A. Khazri, W. Saidani, S. Khemais, Optical properties and toxicity of undoped and Mn-doped ZnS semiconductor nanoparticles synthesized through the aqueous route. Opt. Mater. (Amst) 64, 179–186 (2017)

    Article  CAS  Google Scholar 

  40. G.J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Sonochemical synthesis of hollow copper doped zinc sulfide nanostructures: optical and catalytic properties for visible light assisted photosplitting of water. Ind. Eng. Chem. Res. 53(21), 8766–8772 (2014)

    Article  CAS  Google Scholar 

  41. B. Poornaprakash, U. Chalapathi, M. Reddeppa, S.H. Park, Effect of Gd doping on the structural, luminescence and magnetic properties of ZnS nanoparticles synthesized by the hydrothermal method. Superlattices Microstruct. 97, 104–109 (2016)

    Article  CAS  Google Scholar 

  42. P. Scherrer, “Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in Kolloidchemie Ein Lehrbuch, ed. by R. Zsigmondy (Berlin, Springer, 1912), pp. 387–409

    Chapter  Google Scholar 

  43. N. Daneu, S. Bernik, A. Renik, Inversion boundary induced grain growth in ZnO ceramics: from atomic-scale investigations to microstructural engineering. J. Phys: Conf. Ser. 326(1), 012003 (2011)

    Google Scholar 

  44. A.L. Allred, Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17(3–4), 215–221 (1961)

    Article  CAS  Google Scholar 

  45. A.I. Taub, C.L. Briant, Composition dependence of ductility in boron-doped, nickel-base L12 alloys. Acta Metall. 35(7), 1597–1603 (1987)

    Article  CAS  Google Scholar 

  46. M.A. Osman, A.G. Abd-Elrahim, A.A. Othman, Identification of trapping and recombination levels, structure, morphology, photoluminescence and optical absorption behavior of alloyed ZnxCd1−xS quantum dots. J. Alloys Compd. 722, 344–357 (2017)

    Article  CAS  Google Scholar 

  47. E.M. Hotze, T. Phenrat, G.V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39(6), 1909–1924 (2010)

    Article  CAS  Google Scholar 

  48. H.C. Warad, S.C. Ghosh, B. Hemtanon, C. Thanachayanont, J. Dutta, Luminescent nanoparticles of Mn doped ZnS passivated with sodium hexametaphosphate. Sci. Technol. Adv. Mater. 6(3–4), 296–301 (2005)

    Article  CAS  Google Scholar 

  49. M.A. Osman, A.G. Abd-Elrahim, A.A. Othman, Size-dependent structural phase transitions and their correlation with photoluminescence and optical absorption behavior of annealed Zn0.45Cd0.55S quantum dots. Mater. Charact. 144, 247–263 (2018)

    Article  CAS  Google Scholar 

  50. E.J. Gonzalez, G.J. Piermarini, Handbook of Nanostructured Materials and Nanotechnology, vol. 1 (Academic Press, Cambridge, 2000)

    Book  Google Scholar 

  51. Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38(14), 9797–9805 (1988)

    Article  CAS  Google Scholar 

  52. H.S. Yoon et al., Properties of fluorine doped ZnO thin films deposited by magnetron sputtering. Sol. Energy Mater. Sol. Cells 92(11), 1366–1372 (2008)

    Article  CAS  Google Scholar 

  53. O.I. Mićić et al., Size-dependent spectroscopy of InP quantum dots. J. Phys. Chem. B 101(25), 4904–4912 (1997)

    Article  Google Scholar 

  54. N.K. Dutta, R.J. Nelson, The case for Auger recombination in In1−xGaxAsyP1−y. J. Appl. Phys. 53(1), 74–92 (1982)

    Article  CAS  Google Scholar 

  55. D.-J. Jang, M.E. Flatté, C.H. Grein, J.T. Olesberg, T.C. Hasenberg, T.F. Boggess, Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice. Phys. Rev. B 58(19), 13047 (1998)

    Article  CAS  Google Scholar 

  56. V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Quantization of multiparticle Auger rates in semiconductor quantum dots. Science (80) 287(5455), 1011–1013 (2000)

    Article  CAS  Google Scholar 

  57. Z.F. Liu, F.K. Shan, J.Y. Sohn, S.C. Kim, G.Y. Kim, Y.X. Li, Photoluminescence of ZnO: Ga thin films fabricated by pulsed laser deposition technique. J. Electroceramics 13(1–3), 183–187 (2004)

    Article  CAS  Google Scholar 

  58. S. Muthukumaran, R. Gopalakrishnan, Structural, optical and photoluminescence studies of heavily Mn-doped ZnO nanoparticles annealed under Ar atmosphere. J. Mater. Sci.: Mater. Electron. 23(7), 1393–1401 (2012)

    CAS  Google Scholar 

  59. M.A. Osman, A.G. Abd-Elrahim, Excitation wavelength dependent photoluminescence emission behavior, UV induced photoluminescence enhancement and optical gap tuning of Zn0.45Cd0.55S nanoparticles for optoelectronic applications. Opt. Mater. (Amst) 77, 1–12 (2018)

    Article  CAS  Google Scholar 

  60. P. Thomas, K.E. Abraham, Excitation wavelength dependent visible photoluminescence of CdO nanomorphotypes. J. Lumin. 158, 422–427 (2015)

    Article  CAS  Google Scholar 

  61. T. Uematsu, S. Maenosono, Y. Yamaguchi, Photoinduced fluorescence enhancement in mono- And multilayer films of CdSe/ZnS quantum dots: dependence on intensity and wavelength of excitation light. J. Phys. Chem. B 109(18), 8613–8618 (2005)

    Article  CAS  Google Scholar 

  62. O. Cherniavskaya, L. Chen, M.A. Islam, L. Brus, Photoionization of individual CdSe/CdS core/shell nanocrystals on silicon with 2-nm oxide depends on surface band bending. Nano Lett. 3(4), 497–501 (2003)

    Article  CAS  Google Scholar 

  63. H.A. Le, L.T. Linh, S. Chin, J. Jurng, Photocatalytic degradation of methylene blue by a combination of TiO2 anatase and coconut shell activated carbon. Powder Technol. 225, 167–175 (2012)

    Article  CAS  Google Scholar 

  64. M.-H. Baek, J.-W. Yoon, J.-S. Hong, J.-K. Suh, Application of TiO2 containing mesoporous spherical activated carbon in a fluidized bed photoreactor-adsorption and photocatalytic activity. Appl. Catal. A Gen. 450, 222–229 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the faculty of science Grant office at Assiut University for their financial support of this work. Also, many thanks to Prof. Dr. Abd El-Aziz A. Said for his kind assistance during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Othman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.A., Osman, M.A., Ali, M.A. et al. Sonochemically synthesized Ni-doped ZnS nanoparticles: structural, optical, and photocatalytic properties. J Mater Sci: Mater Electron 31, 1752–1767 (2020). https://doi.org/10.1007/s10854-019-02693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02693-z

Navigation