Skip to main content

Advertisement

Log in

Amorphous CoS modified nanorod NiMoO4 photocatalysis for hydrogen production

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a CoS/NiMoO4 composite catalyst with good TYPE-II heterojunction was prepared by hydrothermal method with NiMoO4 nanorods, with water as a medium to load small amount of amorphous CoS, by changing the loading amounts of amorphous CoS. X-ray diffraction, UV–Visible diffuse reflection and other characteristics indicate that doped amorphous CoS can significantly improve the photocatalytic performance of NiMoO4, and the charge separation and electron transfer efficiency of composite catalysts detected by photoelectric chemistry are also significantly improved compared with NiMoO4. The photocatalytic activity and stability of the composite catalyst were studied by hydrogen evolution experiment. The hydrogen production rate of the composite catalyst can reach 338 μmol, which is 3.23 times higher than pure NiMoO4. This simple hydrothermal synthesis of photocatalytic materials provides new ideas and methods for the design and development of new composite photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Wang, J. Pan, Z. Jiang, Z. Dong, C. Zhao, J. Wang, C. Song, Y. Zheng, C. Li, The bimetallic iron–nickel sulfide modified g-C3N4 nano-heterojunction and its photocatalytic hydrogen production enhancement. J. Alloys Compd. 766, 421–428 (2018)

    Article  CAS  Google Scholar 

  2. L. Li, J. Xu, J.P. Ma, Z. Liu, Y. Li, A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution. J. Colloid Interface Sci. 552, 17–26 (2019)

    Article  CAS  Google Scholar 

  3. L. Li, J. Xu, M. Mao, X. Li, S. Zhao, Z. Liu, Y. Li, Effect of visible light irradiation on hydrogen production by CoNi2S4/CdWO4 controllable flower spherical photocatalyst. Appl. Surf. Sci. 481, 692–701 (2019)

    Article  CAS  Google Scholar 

  4. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007)

    Article  CAS  Google Scholar 

  5. D.P. Kumar, H. Park, E.H. Kim, S. Hong, M. Gopannagari, D.A. Reddy, T.K. Kim, Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B Environ. 224, 230–238 (2018)

    Article  CAS  Google Scholar 

  6. R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol., C 11, 179–209 (2010)

    Article  Google Scholar 

  7. Q.J. Xiang, J.G. Yu, Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 4, 753–759 (2013)

    Article  CAS  Google Scholar 

  8. J. Hou, Z. Wang, W. Kan, S. Jiao, H. Zhu, R.V. Kumar, Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core-shell composites coupled with graphene oxide nanosheets. J. Mater. Chem. 22, 7291–7299 (2012)

    Article  CAS  Google Scholar 

  9. J.B. Joo, M. Dahl, N. Li, F. Zaera, Y. Yin, Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy Environ. Sci. 6, 2082–2092 (2013)

    Article  CAS  Google Scholar 

  10. K.H. Reddy, S. Martha, K.M. Parida, Facile fabrication of Bi2O3/Bi-NaTaO3 photocatalysts for hydrogen generation under visible light irradiation. RSC Adv. 2, 9423–9436 (2012)

    Article  CAS  Google Scholar 

  11. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Article  Google Scholar 

  12. A. Maione, M. Devillers, Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol–gel and citrate methods. J. Solid State Chem. 177, 2339–2349 (2004)

    Article  CAS  Google Scholar 

  13. S.M. Ghoreishian, G.S.R. Raju, E. Pavitra, C.H. Kwak, Y.-K. Han, Y.S. Huh, Controlled synthesis of hierarchical α-nickel molybdate with enhanced solar-light-responsive photocatalytic activity: a comprehensive study on the kinetics and effect of operational factors. Ceram. Int. 45(9), 12041–12052 (2019)

    Article  CAS  Google Scholar 

  14. T.K. Ghorai, D. Dhak, S. Dalai, P. Pramanik, Preparation and photocatalytic activity of nano-sized nickel molybdate (NiMoO4) doped bismuth titanate (Bi2Ti4O11) (NMBT) composite. J. Alloy. Compd. 463, 390–397 (2008)

    Article  CAS  Google Scholar 

  15. L. Yang, J. Wang, Y.P. Wan, Y.Z. Li, H.D. Xie, H. Cheng, H.J. Seo, Structure and effective visible-light-driven photocatalytic activity of α-NiMoO4 for degradation of methylene blue dye. J. Alloy. Compd. 664, 756–763 (2008)

    Article  Google Scholar 

  16. M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, K. Saberyan, Morphology and photoluminescence of BaMoO4 micro- and nano-crystals synthesized by coprecipitation method. Trans. Nonferr. Met. Soc. China 25, 3967–3973 (2015)

    Article  CAS  Google Scholar 

  17. G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari, M. Hamadanian, Facile synthesis and characterization of nickel molybdate nanorods as an effective photocatalyst by co-precipitation method. J. Mater. Sci.: Mater. Electron. 27, 10244–10251 (2016)

    CAS  Google Scholar 

  18. M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab et al., Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 26(10), 7588–7594 (2015)

    CAS  Google Scholar 

  19. F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab et al., Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29(22), 1–9 (2018)

    Google Scholar 

  20. D. Zhang, R. Zhang, C. Xu, Y. Fan, B. Yuan, Microwave-assisted solvothermal synthesis of nickel molybdate nanosheets as a potential catalytic platform for NADH and ethanol sensing. Sens. Actuators B: Chem. 206, 1–7 (2015)

    Article  CAS  Google Scholar 

  21. D. Klissurski, M. Mancheva, R. Iordanova, G. Tyuliev, B. Kunev, Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloys Compd. 422, 53–57 (2006)

    Article  CAS  Google Scholar 

  22. A. Alborzi, S. Khademolhoseini, Nickel molybdate nanoparticles: synthesis, characterization, optical and photocatalytic properties. J. Mater. Sci.: Mater. Electron. 27, 3963–3967 (2016)

    CAS  Google Scholar 

  23. S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27(5), 4351–4355 (2016)

    CAS  Google Scholar 

  24. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)

    Article  CAS  Google Scholar 

  25. V. Umapathy, P. Neeraja, A. Manikandan, P. Ramu, Synthesis of NiMoO4 nanoparticles by sol-gel method and their structural, morphological, optical, magnetic and photocatalytic properties. Trans. Nonferr. Met. Soc. China 27(8), 1785–1793 (2017)

    Article  Google Scholar 

  26. Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699–17702 (2013)

    Article  CAS  Google Scholar 

  27. N. Kornienko, J. Resasco, N. Becknell, C.M. Jian, Y.S. Liu, K. Nie, X.H. Sun, J.H. Guo, S.R. Leone, P.D. Yang, Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 7448–7455 (2015)

    Article  CAS  Google Scholar 

  28. L. Yu, S.Y. Wen, W.D. Shi, Co3S4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors. Mater. Lett. 214, 194–197 (2018)

    Article  Google Scholar 

  29. J. Pu, Z. Shen, J. Zheng, W. Wu et al., Multifunctional Co3S4@ sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37, 7–14 (2017)

    Article  CAS  Google Scholar 

  30. F. Chen, W. Luo, Y. Mo, H. Yu, B. Cheng, In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Appl. Surf. Sci. 430, 448–456 (2018)

    Article  CAS  Google Scholar 

  31. W. Hu, J. Yu, X. Jiang, X. Liu, R. Jin, Y. Lu, L. Zhao, Y. Wu, Y. He, Enhanced photocatalytic activity of g-C3N4 via modification of NiMoO4 nanorods. Colloids Surf. A: Physicochem. Eng. Asp. 514, 98–106 (2017)

    Article  CAS  Google Scholar 

  32. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi et al., Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6236-3

    Article  Google Scholar 

  33. S.K. Ray, D. Dhakal, Y.K. Kshetri, S.W. Lee, Cu-α-NiMoO4 photocatalyst for degradation of methylene blue with pathways and antibacterial performance. J. Photochem. Photobiol. A: Chem. 348, 18–32 (2017)

    Article  CAS  Google Scholar 

  34. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, M. Mehrzad, Controlling the synthesis SrMoO4 nanostructures and investigation its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(6), 5758–5763 (2016)

    CAS  Google Scholar 

  35. D. Klissurski, M. Mancheva, R. Iordanova, G. Tyuliev, B. Kunev, Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloys Compd. 422(1–2), 53–57 (2006)

    Article  CAS  Google Scholar 

  36. J. Xu, H. Yu, H. Guo, Synthesis and behaviors of g-C3N4 coupled with LaxCo3−xO4 nanocomposite for improved photocatalytic activity and stability under visible light. Mater. Res. Bull. 105, 342–348 (2018)

    Article  CAS  Google Scholar 

  37. H. Yu, J. Xu, C. Yin, Z. Liu, Y. Li, Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@ Ni4S3. J. Solid State Chem. 272, 102–112 (2019)

    Article  CAS  Google Scholar 

  38. H. Chen, X. Zhu, Y. Chang, J. Cai, R. Zhao, 3D flower-like CoS hierarchitectures recycled from spent LiCoO2 batteries and its application in electrochemical capacitor. Mater. Lett. 218, 40–43. ISSN 0167-577X (2018)

    Article  CAS  Google Scholar 

  39. Y. Li, J. Xu, Z. Liu et al., Synthesis of Ni12P5 on Co3S4 material for effectively improved photocatalytic hydrogen production from water splitting under visible light. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01529-0

    Article  Google Scholar 

  40. Z. Liu, J. Xu, Y. Li, H. Yu, High performance photocatalytic based on Ce doped CoWO4: controllable synthesis and enhanced photocatalytic activity. Catal. Lett. 148, 3205–3213 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Ningxia Province (NZ17262). This work was financially supported by the Open Project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2019-KF-36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, J., Zhou, X. et al. Amorphous CoS modified nanorod NiMoO4 photocatalysis for hydrogen production. J Mater Sci: Mater Electron 31, 182–195 (2020). https://doi.org/10.1007/s10854-019-02576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02576-3

Navigation