Skip to main content

Advertisement

Log in

Simple hydrothermal synthesis of g-C3N4/Ni9S8 composites for efficient photocatalytic H2 evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The prompt recombination between photogenerated electrons and holes is the common problem for improving the hydrogen evolution performance of a photocatalyst, which could be solved greatly by composite co-catalysis. Herein, a simple hydrothermal reaction was utilized to prepare g-C3N4/Ni9S8 composite photocatalysts. Through electroless nickel plating, Ni9S8 nanostructure was homogeneously grown onto the g-C3N4 surface by using sodium hypophosphite as reducing agent. With the optimum loading amount of Ni9S8, the acquired composite, compared with the raw g-C3N4, presented a significant increase in hydrogen evolution rate under visible light irradiation, which was measured as 355.7 μmol g−1 h−1 at 7 °C, being 21.2 times that of raw g-C3N4. The mechanism for the hydrogen evolution reaction over the present g-C3N4/Ni9S8 composite photocatalysts was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Ramanathan, M.V. Ramana, G. Roberts, D. Kim, C. Corrigan, C. Chung, D. Winker, Warming trends in Asia amplified by brown cloud solar absorption. Nature 448, 575-U5 (2007)

    Article  CAS  Google Scholar 

  2. G. Glenk, S. Reichelstein, Economics of converting renewable power to hydrogen. Nat. Energy 4, 212–216 (2019)

    Google Scholar 

  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  4. L. Buzzetti, G.E.M. Crisenza, P. Melchiorre, Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019)

    Article  CAS  Google Scholar 

  5. Y.R. Li, J. Xu, Z.Y. Liu, H. Yu, Performance of amorphous CoSx/oxygen vacancies ZnO heterojunction photocatalytic hydrogen evolution. J. Mater. Sci. Mater. Electron. 30, 246–258 (2020)

    Article  Google Scholar 

  6. X. Wang, Q. Xu, M.R. Li, S. Shen, X.L. Wang, Y.C. Wang, Z.C. Feng, J.Y. Shi, H.X. Han, C.P. Li, Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3. Angew. Chem. Int. Ed. 51, 13089–13092 (2012)

    Article  CAS  Google Scholar 

  7. S.F. Wang, H.J. Gao, X.L. Yu, S.N. Tang, Y. Wang, L.M. Fang, X.X. Zhao, J.Y. Li, L. Yang, W.Q. Dang, Nanostructured SrTiO3 with different morphologies achieved by mineral acid-assisted hydrothermal method with enhanced optical, electrochemical, and photocatalytic performances. J. Mater. Sci. Mater. Electron. 31, 17736–17754 (2020)

    Article  Google Scholar 

  8. P. Zhang, B.Y. Guan, L. Yu, X.W. Lou, Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion. Chem 4, 162–173 (2018)

    Article  CAS  Google Scholar 

  9. S.V.P. Vattikuti, P.A.K. Reddy, J. Shim, C. Byon, Visible-light-driven photocatalytic activity of SnO2-ZnO quantum dots anchored on g-C3N4 nanosheets for photocatalytic pollutant degradation and H2 production. ACS Omega 3, 7587–7602 (2018)

    Article  CAS  Google Scholar 

  10. S.D. Guan, X.L. Fu, Y. Zhang, Z.J. Peng, β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem. Sci. 6, 1574–1585 (2018)

    Article  Google Scholar 

  11. G. Mahalakshmi, M. Rajeswari, P. Ponnarasi, Fabrication of dandelion clock-inspired preparation of core-shell TiO2@MoS2 composites for unprecedented high visible light-driven photocatalytic performance. J. Mater. Sci. Mater. Electron. 31, 22252–22264 (2020)

    Article  CAS  Google Scholar 

  12. D. Chen, Z.F. Liu, Z.G. Guo, W.G. Yan, M.N. Ruan, Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chem. Eng. J. 381, 122655 (2020)

    Article  CAS  Google Scholar 

  13. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4) based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    Article  CAS  Google Scholar 

  14. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  15. D. Masih, Y.Y. Ma, S.G. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017)

    Article  CAS  Google Scholar 

  16. C. Prasad, H. Tang, Q.Q. Liu, I. Bahadur, S. Karlapudi, Y.J. Jiang, A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. Int. J. Hydrog. Energy 45, 337–379 (2020)

    Article  CAS  Google Scholar 

  17. K.C. Devarayapalli, K. Lee, H.-B. Do, N.N. Dang, K. Yoo, J. Shim, S.V.P. Vattikuti, Mesostructured g-C3N4 nanosheets interconnected with V2O5 nanobelts as electrode for coin-cell-type-asymmetric supercapacitor device. Mater. Today Energy 21, 100699 (2021)

    Article  CAS  Google Scholar 

  18. S.V.P. Vattikutia, B.P. Reddy, C. Byon, J. Shim, Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitor. J. Solid State Chem. 262, 106–111 (2018)

    Article  Google Scholar 

  19. L.J. Zhang, X.Q. Hao, Y.B. Li, Z.L. Jin, Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution. Appl. Surf. Sci. 499, 143862 (2020)

    Article  CAS  Google Scholar 

  20. Z.W. Zhao, Y.J. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)

    Article  CAS  Google Scholar 

  21. X. Li, J.G. Yu, M. Jaroniec, X.B. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019)

    Article  CAS  Google Scholar 

  22. Y. Zhang, Z.J. Peng, S.D. Guan, X.L. Fu, Novel beta-NiS film modified CdS nanoflowers heterostructure nanocomposite: extraordinarily highly efficient photocatalysts for hydrogen evolution. Appl. Catal. B 224, 1000–1008 (2018)

    Article  CAS  Google Scholar 

  23. J.H. Lee, S.I. Kim, S.M. Park, M. Kang, A p-n heterojunction NiS-sensitized TiO2 photocatalytic system for efficient photoreduction of carbon dioxide to methane. Ceram. Int. 43, 1768–1774 (2017)

    Article  CAS  Google Scholar 

  24. K.L. He, J. Xie, M.L. Li, X. Li, In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation. Appl. Surf. Sci. 430, 208–217 (2018)

    Article  CAS  Google Scholar 

  25. M.A. Ashraf, Y.F. Yang, A. Fakhri, Synthesis of NiS-MoO3 nanocomposites and decorated on graphene oxides for heterogeneous photocatalysis, antibacterial and antioxidant activities. Ceram. Int. 46, 8379–8384 (2020)

    Article  CAS  Google Scholar 

  26. S.D. Guan, X.L. Fu, Z.Z. Lao, C.H. Jin, Z.J. Peng, NiS-MoS2 Hetero-nanosheet arrays on carbon cloth for high-performance flexible hybrid energy storage devices. ACS Sustain. Chem. Eng. 7, 11672–11681 (2019)

    Article  CAS  Google Scholar 

  27. A. Khalil, Q. Liu, Z. Muhammad, M. Habib, R. Kha, Q. He, Q. Fang, H.T. Masood, Z. Rehman, T. Xiang, C.Q. Wu, L. Song, Synthesis of Ni9S8/MoS2 heterocatalyst for enhanced hydrogen evolution reaction. Langmuir 33, 5148–5153 (2017)

    Article  CAS  Google Scholar 

  28. H. Yang, C. Wang, Y. Zhang, Q. Wang, Chemical valence-dependent electrocatalytic activity for oxygen evolution reaction: a case of nickel sulfides hybridized with N and S co-doped carbon nanoparticles. Small 14, 1703273 (2018)

    Article  Google Scholar 

  29. J.E. Samaniego-Benitez, K. Jimenez-Rangel, L. Lartundo-Rojas, A. Garcia-Garcia, A. Mantilla, Enhanced photocatalytic H2 production over g-C3N4/NiS hybrid photocatalyst. Mater. Lett. 290, 129476 (2021)

    Article  CAS  Google Scholar 

  30. J.Q. Wen, J. Xie, H.D. Zhang, A.P. Zhang, Y.J. Liu, X.B. Chen, X. Li, Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation. ACS Appl. Mater. Interfaces 9, 14031–13042 (2017)

    Article  CAS  Google Scholar 

  31. J.Q. Wen, J. Xie, Z.H. Yang, R.C. Shen, H.Y. Li, X.Y. Luo, X.B. Chen, X. Li, Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an Insight into the tri-functional roles of nanocarbons. ACS Sustain. Chem. Eng. 5, 2224–2236 (2017)

    Article  CAS  Google Scholar 

  32. H. Zhao, H.Z. Zhang, G.W. Cui, Y.M. Dong, G.L. Wang, P.P. Jiang, X.M. Wu, N. Zhao, A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: from the case of NiS/g-C3N4. Appl. Catal. B 225, 284–290 (2018)

    Article  CAS  Google Scholar 

  33. J.J. Huang, C.M. Gui, H.D. Ma, P. Li, W.P. Wu, Z.M. Chen, Surface metallization of PET sheet: fabrication of Pd nanoparticle/polymer brush to catalyze electroless nickel plating. Compos. Sci. Technol. 202, 108547 (2021)

    Article  CAS  Google Scholar 

  34. A. Li, Z.J. Peng, X.L. Fu, Exfoliated, mesoporous W18O49/g-C3N4 composites for efficient photocatalytic H2 evolution. Solid State Sci. 106, 106298 (2020)

    Article  CAS  Google Scholar 

  35. J.J. Ding, X.X. Sun, Q. Wang, D.S. Li, X.Y. Li, X.X. Li, L. Chen, X. Zhang, X.Y. Tian, K. Ostrikov, Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation. J. Alloys Compd. 873, 159871 (2021)

    Article  CAS  Google Scholar 

  36. L.F. Cui, X. Ding, Y.G. Wang, H.C. Shi, L.H. Huang, Y.H. Zuo, S.F. Kang, Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl. Surf. Sci. 391, 202–210 (2017)

    Article  CAS  Google Scholar 

  37. P. Wang, N. Lu, Y. Su, N. Liu, H.T. Yu, J. Li, Y. Wu, Fabrication of WO3@g-C3N4 with core@shell nanostructure for enhanced photocatalytic degradation activity under visible light. Appl. Surf. Sci. 423, 197–204 (2017)

    Article  CAS  Google Scholar 

  38. H. Jung, T.T. Pham, E.W. Shin, Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: the annealing temperature effect. Appl. Surf. Sci. 458, 369–381 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support for this work from the National Natural Science Foundation of China (Grant Nos. 11674035 and 61274015), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Xiuli Fu.

Ethics declarations

Conflict of interest

There is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Peng, Z. & Fu, X. Simple hydrothermal synthesis of g-C3N4/Ni9S8 composites for efficient photocatalytic H2 evolution. J Mater Sci: Mater Electron 32, 21643–21657 (2021). https://doi.org/10.1007/s10854-021-06678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06678-9

Navigation