Skip to main content

Advertisement

Log in

Effects of quantum well thickness and aluminum content of electron blocking layer on InGaN-based laser diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of quantum well (QW) thickness and aluminum content of electron blocking layer (EBL) on device performance of InGaN-based laser diodes (LDs) are numerically investigated with LASTIP. It is found that the device performance of the 3.0-nm-thick QW LD is the best. The threshold current increases and the output power at 120 mA decreases when the QW thickness is too thin or too thick. Actually, the optical and electrical characteristics of InGaN-based LDs demonstrate that the optical confinement factor decreases and optical loss increases when the QW thickness is too thin. The stimulated recombination rate decreases due to the poorer overlap of electron–hole wave functions and the enhanced polarization-induced built-in electric field when the well thickness is too thick. Moreover, the calculation results of LDs with different aluminum compositions of EBL demonstrate that the effectiveness of EBL would be enhanced through increasing aluminum content when the thickness of QWs decreases, because there is a reduction of ground-state energy level and the energy difference between the ground state and the top of the quantum barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, H. Narui, Watt-class green (530 nm) and blue (465 nm) laser diodes. Phys. Status Solidi A. 215, 5 (2018)

    Article  Google Scholar 

  2. D.G. Zhao, J. Yang, Z.S. Liu, P. Chen, J.J. Zhu, D.S. Jiang, Y.S. Shi, H. Wang, L.H. Duan, L.Q. Zhang, H. Yang, Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. J. Semicond. 38, 051001 (2017)

    Article  Google Scholar 

  3. U. Strauss, C. Eichler, C. Rumbolz, A. Lell, S. Lutgen, S. Tautz, M. Schillgalies, S. Brüninghoff, Beam quality of blue InGaN laser for projection. Phys. Status Solidi C. 5, 2077–2079 (2008)

    Article  CAS  Google Scholar 

  4. E. Buckley, Laser wavelength choices for pico-projector applications. J. Display Technol. 7, 402–406 (2011)

    Article  Google Scholar 

  5. J. Yang, Z. Liu, B. Xue, Z. Liao, L.S. Feng, N. Zhang, J.X. Wang, J.M. Li, Highly uniform white light-based visible light communication using red, green, and blue laser diodes. IEEE. Photonics. J. 10, 1 (2018)

    Google Scholar 

  6. H.M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.H. Park, X.B. Sun, G.Y. Liu, C.H. Kang, T.K. Ng, M.S. Alouini, Light based underwater wireless communications. Jpn. J. Appl. Phys. 57, 08PA06 (2018)

    Article  Google Scholar 

  7. G.R. Goldberg, P. Ivanov, N. Ozaki, D.T.D. Childs, K.M. Groom, K.L. Kennedy, R.A. Hogg, Gallium nitride light sources for optical coherence tomography. SPIE Opto. 10104, 101041X (2017)

    Google Scholar 

  8. N. Ruhnke, A. Müller, B. Eppich, M. Maiwald, B. Sumpf, G. Erbert, G. Tränkle, Compact deep UV System at 222.5 nm based on frequency doubling of GaN laser diode emission. IEEE. Photonic. Tech. L. 30, 289 (2018)

    Article  CAS  Google Scholar 

  9. S.P. Najda, P. Perlin, T. Suski, L. Marona, S. Stanczyk, P. Wisniewski, R. Czernecki, D. Schiavon, M. Leszczyński, GaN laser diodes for high-power optical integration and quantum technologies. SPIE Opto. 10532, 1053217 (2018)

    Google Scholar 

  10. S.P. Najda, P. Perlin, T. Suski, L. Marona, S. Stanczyk, P. Wisniewski, R. Czernecki, D. Schiavon, M. Leszczyński, Tapered waveguide high power AlGaInN laser diodes and amplifiers for optical integration and quantum technologies. SPIE 10238, 102380W (2017)

    Google Scholar 

  11. S. Lutgen, A. Avramescu, T. Lermer, D. Queren, J. Müller, G. Bruederl, U. Strauss, True green InGaN laser diodes. Phys. Status. Solidi. A. 207, 1318 (2010)

    Article  CAS  Google Scholar 

  12. D. Sizov, R. Bhat, C.E. Zah, Gallium indium nitride-based green lasers. J. Lightwave Technol. 30, 679 (2012)

    Article  CAS  Google Scholar 

  13. L.R. Jiang, J.P. Liu, A.Q. Tian, Y. Cheng, Z.C. Li, L.Q. Zhang, S.M. Zhang, D.Y. Li, M. Ikeda, H. Yang, GaN-based green laser diodes. J. Semicond. 37, 111001 (2016)

    Article  Google Scholar 

  14. S. Lutgen, D. Dini, I. Pietzonka, S. Tautz, A. Breidenassel, A. Lell, A. Avramescu, C. Eichler, T. Lermer, J. Müller, G. Bruederl, A. Somers, U. Strauss, W.G. Scheibenzuber, U.T. Schwarz, B. Pasenow, S. Koch, SPIE. 7953, 79530G (2011)

    Google Scholar 

  15. U. Strauss, A. Somers, U. Heine, T. Wurm, M. Peter, C. Eichler, S. Gerhard, G. Bruederl, S. Tautz, B. Stojetz, L. Andreas, H. Koenig, GaInN laser diodes from 440 to 530 nm: a performance study on single mode and multi-mode R&D designs. SPIE 10123, 101230A (2017)

    Google Scholar 

  16. F. Liang, J. Yang, D.G. Zhao, J. Yang, Z.S. Liu, J.J. Zhu, P. Chen, D.S. Jiang, Y.S. Shi, H. Wang, L.H. Duan, L.Q. Zhang, H. Yang, Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h. J. Semicond. 40, 022801 (2019)

    Article  CAS  Google Scholar 

  17. J. Piprek, Analysis of efficiency limitations in high-power InGaN/GaN laser diodes. Opt. Quant. Electron. 48, 471 (2016)

    Article  Google Scholar 

  18. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamad, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW. Jpn. J. Appl. Phys. 37, L627 (1998)

    Article  CAS  Google Scholar 

  19. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys. 35, L74 (1996)

    Article  CAS  Google Scholar 

  20. X. Li, D.G. Zhao, D.S. Jiang, P. Chen, Z.S. Liu, J.J. Zhu, M. Shi, D.M. Zhao, W. Liu, S.M. Zhang, H. Yang, Fabrication of ridge waveguide of 808 nm GaAs-based laser diodes by wet chemical etching. J. Semicond. 36, 074009 (2015)

    Article  Google Scholar 

  21. Y. Pang, X. Li, B.S. Zhao, Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode. J. Semicond. 37, 084007 (2016)

    Article  Google Scholar 

  22. V. Fiorentini, F. Bernardini, O. Ambacher, Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204–1206 (2002)

    Article  CAS  Google Scholar 

  23. F. Bernardini, V. Fiorentini, Nonlinear macroscopic polarization in III–V nitride alloys. Phys. Rev. B 64, 085207 (2001)

    Article  Google Scholar 

  24. C.Y. Huang, Y.D. Lin, A. Tyagi, A. Chakraborty, H. Ohta, J.S. Speck, S.P. DenBaars, S. Nakamura, Optical waveguide simulations for the optimization of InGaN-based green laser diodes. J. Appl. Phys. 107, 023101 (2010)

    Article  Google Scholar 

  25. G.M. Laws, E.C. Larkins, I. Harrison, C. Molloy, D. Somerford, Improved refractive index formulas for the AlxGa1−xN and InyGa1−yN alloys. J. Appl. Phys. 89, 1108–1115 (2001)

    Article  CAS  Google Scholar 

  26. J. Piprek, T. Peng, G. Qui, J.O. Olowolafe, Energy Gap Bowing and Refractive Index Spectrum of AlInN and AlGaInN. IEEE International Symposium on Compound Semiconductors. 227–230 (1997)

  27. T. Peng, J. Piprek, Refractive index of AlGaInN alloys. Electron. Lett. 32, 2285 (1996)

    Article  Google Scholar 

  28. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, L382 (1997)

    Article  CAS  Google Scholar 

  29. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multi-quantum well structures. Appl. Phys. Lett. 69, 4188 (1996)

    Article  CAS  Google Scholar 

  30. T.D. Moustakas, R. Paiella, Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep. Prog. Phys. 80, 106501 (2017). Physical Society

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos.61474142 and 61974162), State Key Laboratory of Integrated Optoelectronics, China (IOSKL2019KF19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Liang, F. & Zhao, D.G. Effects of quantum well thickness and aluminum content of electron blocking layer on InGaN-based laser diodes. J Mater Sci: Mater Electron 31, 5814–5819 (2020). https://doi.org/10.1007/s10854-019-02539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02539-8

Navigation