Skip to main content
Log in

Development of novel Bi1−xSmxFeO3 based polymer-ceramic nanocomposite for microwave application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth ferrite (BiFeO3) is a widely explored magneto electric ceramic whose properties can be enhanced through doping with a rare earth metal like samarium. Methoxy assisted sol–gel technique was used in the synthesis of pure phase bismuth ferrite and various concentrations of samarium doped bismuth ferrite Bi1−xSmxFeO3 where x = 0.05 and x = 0.1 (Bi0.95Sm0.05FeO3, Bi0.9Sm0.1FeO3) nanoparticles. The synthesized nanoparticles were characterized for their structural, morphological, and electrical behavior. The synthesized nanoparticles were used in the making of polymer-ceramic nanocomposite films by homogenous dispersion of the nanoparticles into the polyvinylacetate (PVA) polymer matrix. The developed Bi1−xSmxFeO3/PVA nanocomposite films were characterized for their structural, functional and dielectric characteristics that proved it to be used in the development of microwave devices for transient electronics. Based on the dielectric characterization, microstrip patch antennas were successfully designed, simulated and fabricated to function in the X Band (8 to 12 GHz) with polymer-ceramic (Bi1−xSmxFeO3/PVA) nanocomposite film as the substrate materials. The comparative analysis of the designed antennas showed excellent improvement in bandwidth and directivity. Bi1−xSmxFeO3/PVA nanocomposite films are found to be a favorable material for flexible transient electronics through controlled doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Reyes-Vera, M. Arias-Correa, A. Giraldo-Muno, D. Catano-Ochoa, J. Santa-Marin, Development of an improved response ultra-wideband antenna based on conductive adhesive of carbon composite. Progr. Electromagn. Res. 79, 199–208 (2017)

    Article  Google Scholar 

  2. W. Wang, C. Ma, X. Zhang, J. Shen, N. Hanagata, J. Huangfu, M. Xu, High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology. Sci. Technol. Adv. Mater. 20(1), 870–875 (2019)

    Article  Google Scholar 

  3. T. Inui, H. Koga, M. Nogi, N. Komoda, K. Suganuma, A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv. Mater. 27(6), 1112–1116 (2015)

    Article  CAS  Google Scholar 

  4. S. Kim, A. Rida, V. Lakafosis, S. Nikolaou, M.M. Tentzeris, 77-GH z mmWave antenna array on liquid crystal polymer for automotive radar and RF front-end module. ETRI J. 41(2), 262–269 (2019)

    Article  Google Scholar 

  5. R.V. Petrov, A.S. Tatarenko, G. Srinivasan, J.V. Mantese, Antenna miniaturization with ferrite ferroelectric composites. Microw Opt. Technol. Lett. 50(12), 3154–3157 (2008)

    Article  Google Scholar 

  6. J. Castro, E. Rojas, T. Weller, J. Wang, High-k and low-loss polymer composites with co-fired Nd and Mg-Ca titanates for 3D RF and microwave printed devices: fabrication and characterization. in Proceedings of the 2015 IEEE 16th annual wireless and microwave technology conference (WAMICON), IEEE, April 2015, pp. 1–5

  7. N.Z. Yieng, N.M. Jizat, S.Y. Keong, L.Y. Chiang, Z. Yusoff, M.F. Jamlos, Investigation on the thin film nanocomposite ceramic-polymer to patch antenna. J. Telecommun. Electron. Comput. Eng. (JTEC) 10(3), 61–64 (2018)

    Google Scholar 

  8. Q. Qiao, L. Zhang, F. Yang, Z. Yue, A.Z. Elsherbeni, Reconfigurable sensing antenna with novel HDPE-BST material for temperature monitoring. IEEE Antennas Wirel. Propag. Lett. 12, 1420–1423 (2013)

    Article  Google Scholar 

  9. J. Varghese, D.R. Nair, P. Mohanan, M.T. Sebastian, Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications. Phys. Chem. Chem. Phys. 17(22), 14943–14950 (2015)

    Article  CAS  Google Scholar 

  10. L. Zhang, Z.X. Yue, L.T. Li, Low dielectric loss polymer-ceramic composites for wireless temperature sensation, in Key Engineering Materials (Vol. 602), ed. by D.K. Das-Gupta (Trans Tech Publications, Zurich, 2014), pp. 752–756

    Google Scholar 

  11. W. Yan, Z.L. Hou, S. Bi, R.B. Cui, M. Tang, Enhanced magnetization and bias voltage-dependent dielectric properties of Sm-doped BiFeO3 multiferroic nanofibers. J. Mater. Sci. 53(14), 10249–10260 (2018)

    Article  CAS  Google Scholar 

  12. B. Yotburut, P. Thongbai, T. Yamwong, S. Maensiri, Synthesis and characterization of multiferroic Sm-doped BiFeO3 nanopowders and their bulk dielectric properties. J. Magn. Magn. Mater. 437, 51–61 (2017)

    Article  CAS  Google Scholar 

  13. G.R. Gajula, K.C. Kumar, L.R. Buddiga, N. Vattikunta, High frequency studies on dielectric, impedance and Nyquist properties of BaTiO3–Li0.5Fe2.5O4 composite ceramics substituted with Sm and Nb for microwave device applications. J. Mater. Sci. 30(4), 3889–3898 (2019)

    CAS  Google Scholar 

  14. W. Song, Z. Sun, D. Zhang, B. Han, L. He, X. Wang, Q. Lei, Synthesis and characterization of low density polyethylene with multiferroic bismuth ferrite nanocomposite. J. Mater. Sci. 27(3), 2328–2334 (2016)

    CAS  Google Scholar 

  15. M.S. Tamboli, P.K. Palei, S.S. Patil, M.V. Kulkarni, N.N. Maldar, B.B. Kale, Polymethyl methacrylate (PMMA)–bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties. Dalton Trans. 43(35), 13232–13241 (2014)

    Article  CAS  Google Scholar 

  16. O.P. Bajpai, J.B. Kamdi, M. Selvakumar, S. Ram, D. Khastgir, S. Chattopadhyay, Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites. Express Polym. Lett. 8(9), 669–681 (2014)

    Article  CAS  Google Scholar 

  17. H. Mosallaei, K. Sarabandi, Magneto-dielectrics in electromagnetics: concept and applications. IEEE Trans. Antennas Propag. 52(6), 1558–1567 (2004)

    Article  Google Scholar 

  18. R.C. Hansen, M. Burke, Antennas with magneto-dielectrics. Microw. Opt. Technol. Lett. 26(2), 75–78 (2000)

    Article  Google Scholar 

  19. H. Maleki, Photocatalytic activity, optical and ferroelectric properties of Bi0.8Nd0.2FeO3 nanoparticles synthesized by sol-gel and hydrothermal methods. J. Magn. Magn. Mater. 458, 277–284 (2018)

    Article  CAS  Google Scholar 

  20. S. Ghosh, S. Dasgupta, A. Sen, H. Sekhar Maiti, Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J. Am. Ceram. Soc. 88(5), 1349–1352 (2005)

    Article  CAS  Google Scholar 

  21. M. Sakar, S. Balakumar, P. Saravanan, S.N. Jaisankar, Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method. Mater. Res. Bull. 48(8), 2878–2885 (2013)

    Article  CAS  Google Scholar 

  22. X. Xu, T. Guoqiang, R. Huijun, X. Ao, Structural, electric and multiferroic properties of Sm-doped BiFeO3 thin films prepared by the sol–gelprocess. Ceram. Int. 39(6), 6223–6228 (2013)

    Article  CAS  Google Scholar 

  23. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, Crystal structure refinement, dielectric and magnetic properties of Sm modified BiFeO3 multiferroic. J. Mol. Struct. 1097, 207–213 (2015)

    Article  CAS  Google Scholar 

  24. V.S. Puli, D.K. Pradhan, R.K. Katiyar, I. Coondoo, N. Panwar, P. Misra, R.S. Katiyar, Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films. J. Phys. D Appl. Phys. 47(7), 075502 (2014)

    Article  Google Scholar 

  25. N.B. Kumar, V. Crasta, B.M. Praveen, Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10-98) doped by ZnO nanoparticles. Phys. Res. Int. 2014, 9 (2014)

    Article  Google Scholar 

  26. W. Zhao, H. Zhou, Y. Yan, D. Liu, Topochemical synthesis of plate-like Na0.5Bi0.5TiO3 from Aurivillius precursor. J. Am. Ceram. Soc. 91(4), 1322–1325 (2008)

    Article  CAS  Google Scholar 

  27. S. Liu, W. Sun, J. Li, Z. Gu, K. Wang, S. Xiao, Q. Song, Random lasing actions in self-assembled perovskite nanoparticles. Opt. Eng. 55(5), 057102 (2016)

    Article  Google Scholar 

  28. C. Anthonyraj, M. Muneeswaran, S.G. Raj, N.V. Giridharan, V. Sivakumar, G. Senguttuvan, Effect of samarium doping on the structural, optical and magnetic properties of sol–gel processed BiFeO3 thin films. J. Mater. Sci. 26(1), 49–58 (2015)

    CAS  Google Scholar 

  29. M.B. Patil, Hybrid adsorbent membranes of Poly (vinyl alcohol) and Zeolite A for pervaporation dehydration of Ethanol at their Azeotropic Point. J. Mater. Sci. Surf. Eng. 4(1), 320–325 (2015)

    Google Scholar 

  30. D. O’Neill, R.M. Bowman, J.M. Gregg, Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 77(10), 1520–1522 (2000)

    Article  Google Scholar 

  31. Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li, C.W. Nan, Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Appl. Phys. Lett. 101(15), 152904 (2012)

    Article  Google Scholar 

  32. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.C. Zur Loye, Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4), 1697–1733 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors are thankful to Dr. A.C James Raju, Professor, School of Physics, University of Hyderabad for providing guidance and dielectric measurements facilities through the UGC-networking resource center. We also extend our gratitude to the Principal and Management of Mepco Schlenk Engineering College for the experimental facilities and support rendered for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anlin Golda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golda, R.A., Marikani, A. & Alex, E.J. Development of novel Bi1−xSmxFeO3 based polymer-ceramic nanocomposite for microwave application. J Mater Sci: Mater Electron 31, 324–336 (2020). https://doi.org/10.1007/s10854-019-02526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02526-z

Navigation