Skip to main content

Advertisement

Log in

Construction of porous hierarchical NiCo2S4 toward high rate performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing high-performance supercapacitors is an effective way to satisfy the ever-increasing energy storage demand for emerging devices, but the inferior rate performance of battery-type supercapacitors limits their large-scale utilization. Herein, porous hierarchical nickel cobalt sulfide (NiCo2S4) was constructed by a novel strategy that the synthesized nickel cobalt oxide nanosheets as chemical template for hydrothermal method. Furthermore, the backbone of nickel cobalt oxide nanosheets can finally convert to NiCo2S4, which both plays the role of matrix to buffer the volume variation and enhances entire conductivity. Benefiting from high specific area (79.9 m2 g−1), suitable nanopores for KOH electrolyte, high conductivity, and multiple Co/Ni valence, the hierarchical NiCo2S4 electrode delivers a high specific capacity of 1035.1 F g−1 at the current density of 1 A g−1, and an ultrahigh rate performance of 80.9% capacitance retention at 20 A g−1 was obtained. The assembled asymmetric supercapacitor device could achieve the maximum capacity of 102.4 F g−1 at 5 mV s−1 and maintain at 80.5 F g−1 at 50 mV s−1, indicating its superior rate ability. In addition, the highest energy density of 35.4 Wh kg−1 can be obtained at a power density of 0.4 kW kg−1. These results indicate that the porous hierarchical NiCo2S4 could be served as high rate performance electrode materials for advanced supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7, 12647 (2016)

    Google Scholar 

  2. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Google Scholar 

  3. H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo, D. Xia, J. Mater. Chem. A 3, 428–437 (2015)

    CAS  Google Scholar 

  4. X. Wang, S. Chen, D. Li, S. Sun, Z. Peng, S. Komarneni, D. Yang, ACS Sustain. Chem. Eng. 6, 633–641 (2018)

    CAS  Google Scholar 

  5. Z. Yin, Y. Bu, J. Ren, S. Chen, D. Zhao, Y. Zou, S. Shen, D. Yang, Chem. Eng. J. 345, 165–173 (2018)

    CAS  Google Scholar 

  6. Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, J. Mater. Chem. A 3, 43–59 (2015)

    CAS  Google Scholar 

  7. M. Yang, H. Cheng, Y. Gu, Z. Sun, J. Hu, L. Cao, F. Lv, M. Li, W. Wang, Z. Wang, S. Wu, H. Liu, Z. Lu, Nano Res. 8, 2744–2754 (2015)

    CAS  Google Scholar 

  8. J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Adv. Funct. Mater. 28, 1804663 (2018)

    Google Scholar 

  9. J. Wu, X. Shi, W. Song, H. Ren, C. Tan, S. Tang, X. Meng, Nano Energy 45, 439–447 (2018)

    CAS  Google Scholar 

  10. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5, 8879–8883 (2013)

    CAS  Google Scholar 

  11. W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen, A. Yu, Adv. Funct. Mater. 28, 1706675 (2018)

    Google Scholar 

  12. Z. Wu, X. Pu, X. Ji, Y. Zhu, M. Jing, Q. Chen, F. Jiao, Electrochim. Acta 174, 238–245 (2015)

    CAS  Google Scholar 

  13. X. Yu, M. Wang, A. Gagnoud, Y. Fautrelle, Z. Ren, X. Li, Mater. Design 145, 135–143 (2018)

    CAS  Google Scholar 

  14. Y.P. Gao, K.J. Huang, Chem. Asian J. 12, 1969–1984 (2017)

    CAS  Google Scholar 

  15. N. Wang, Y. Wang, S. Cui, H. Hou, L. Mi, W. Chen, ChemNanoMat 3, 269–276 (2017)

    CAS  Google Scholar 

  16. L. Mei, T. Yang, C. Xu, M. Zhang, L. Chen, Q. Li, T. Wang, Nano Energy 3, 36–45 (2014)

    CAS  Google Scholar 

  17. X.X. Li, X.T. Wang, K. Xiao, T. Ouyang, N. Li, Z.Q. Liu, J. Power Sources 402, 116–123 (2018)

    CAS  Google Scholar 

  18. Y. Liu, Z. Wang, Y. Zhong, M. Tade, W. Zhou, Z. Shao, Adv. Funct. Mater. 27, 1701229 (2017)

    Google Scholar 

  19. X. He, Q. Liu, J. Liu, R. Li, H. Zhang, R. Chen, J. Wang, Chem. Eng. J. 325, 134–143 (2017)

    CAS  Google Scholar 

  20. R. Li, S. Wang, Z. Huang, F. Lu, T. He, J. Power Sources 312, 156–164 (2016)

    CAS  Google Scholar 

  21. L. Shen, Q. Che, H. Li, X. Zhang, Adv. Funct. Mater. 24, 2630–2637 (2014)

    CAS  Google Scholar 

  22. P. Wen, M. Fan, D. Yang, Y. Wang, H. Cheng, J. Wang, J. Power Sources 320, 28–36 (2016)

    CAS  Google Scholar 

  23. X. Yang, H. Niu, H. Jiang, Z. Sun, Q. Wang, F. Qu, ChemElectroChem 5, 1576–1585 (2018)

    CAS  Google Scholar 

  24. F. Zhao, W. Huang, D. Zhou, J. Alloys Compd. 755, 15–23 (2018)

    CAS  Google Scholar 

  25. F. Yang, Z. Fang, K. Xu, J. Yang, J. Hu, Mater. Lett. 191, 101–104 (2017)

    CAS  Google Scholar 

  26. L. Cao, G. Tang, J. Mei, H. Liu, J. Power Sources 359, 262–269 (2017)

    CAS  Google Scholar 

  27. S. Raj, S.K. Srivastava, P. Kar, P. Roy, RSC Adv. 6, 95760–95767 (2016)

    CAS  Google Scholar 

  28. L. Hou, R. Bao, M. Rehan, L. Tong, G. Pang, X. Zhang, C. Yuan, Adv. Electron. Mater. 3, 1600322 (2017)

    Google Scholar 

  29. T. Wang, G. Zhang, S. Zhu, B. Guan, J. Zhang, S. Xing, Y. Zhang, Electrochim. Acta 211, 627–635 (2016)

    CAS  Google Scholar 

  30. G. Sheng, J. Chen, Y. Li, H. Ye, Z. Hu, X.Z. Fu, R. Sun, W. Huang, C.P. Wong, ACS Appl. Mater. Interfaces 10, 22248–22256 (2018)

    CAS  Google Scholar 

  31. Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, X. Ji, J. Power Sources 273, 584–590 (2015)

    CAS  Google Scholar 

  32. S.G. Mohamed, I. Hussain, J.J. Shim, Nanoscale 10, 6620–6628 (2018)

    CAS  Google Scholar 

  33. Q. Gao, X. Wang, Z. Shi, Z. Ye, W. Wang, N. Zhang, Z. Hong, M. Zhi, Chem. Eng. J. 331, 185–193 (2018)

    CAS  Google Scholar 

  34. X. Li, Q. Li, Y. Wu, M. Rui, H. Zeng, Two-dimensional. ACS Appl. Mater. Interfaces 7, 19316–19323 (2015)

    CAS  Google Scholar 

  35. W. Li, J. Liu, D. Zhao, Nat. Rev. Mater. 1, 1–17 (2016)

    Google Scholar 

  36. B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Adv. Mater. 29, 1605051 (2017)

    Google Scholar 

  37. X. Ning, F. Li, Y. Zhou, Y.-E. Miao, C. Wei, T. Liu, Chem. Eng. J. 328, 599–608 (2017)

    CAS  Google Scholar 

  38. J. Shen, J. Wu, L. Pei, M.-T.F. Rodrigues, Z. Zhang, F. Zhang, X. Zhang, P.M. Ajayan, M. Ye, Adv. Energy Mater. 6, 1600341 (2016)

    Google Scholar 

  39. X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Nano Energy 16, 71–80 (2015)

    CAS  Google Scholar 

  40. H. Liu, Y. Wang, Z. Li, Z. Yao, J. Lin, Y. Sun, Z. Li, J. Colloid Interface Sci. 528, 100–108 (2018)

    CAS  Google Scholar 

  41. F. Wang, G. Li, J. Zheng, J. Ma, C. Yang, Q. Wang, J. Colloid Interface Sci. 516, 48–56 (2018)

    CAS  Google Scholar 

  42. Y. Zheng, X. Wang, W. Zhao, X. Cao, J. Liu, Chem. Eng. J. 333, 603–612 (2018)

    CAS  Google Scholar 

  43. Q. Chen, J. Miao, L. Quan, D. Cai, H. Zhan, Nanoscale 10, 4051–4060 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51202150 and 51272161), Shenzhen Basic Research Program (Nos. JCYJ20170817102025753, JCYJ20170818100134570), China Postdoctoral Science Foundation (No. 2018M633126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhao Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Huang, W., Sial, M.A.Z.G. et al. Construction of porous hierarchical NiCo2S4 toward high rate performance supercapacitor. J Mater Sci: Mater Electron 30, 21229–21239 (2019). https://doi.org/10.1007/s10854-019-02496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02496-2

Navigation